1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This module provides a generic interface to subscribe to unable-to-decrypt
//! events, and notable updates to such events.
//!
//! This provides a general trait that a consumer may implement, as well as
//! utilities to simplify usage of this trait.

use std::{
    collections::HashMap,
    sync::{Arc, Mutex},
    time::{Duration, Instant},
};

use growable_bloom_filter::{GrowableBloom, GrowableBloomBuilder};
use matrix_sdk::{crypto::types::events::UtdCause, Client};
use matrix_sdk_base::{StateStoreDataKey, StateStoreDataValue, StoreError};
use ruma::{EventId, OwnedEventId};
use tokio::{
    spawn,
    sync::{Mutex as AsyncMutex, MutexGuard},
    task::JoinHandle,
    time::sleep,
};
use tracing::error;

/// A generic interface which methods get called whenever we observe a
/// unable-to-decrypt (UTD) event.
pub trait UnableToDecryptHook: std::fmt::Debug + Send + Sync {
    /// Called every time the hook observes an encrypted event that couldn't be
    /// decrypted.
    ///
    /// If the hook manager was configured with a max delay, this could also
    /// contain extra information for late-decrypted events. See details in
    /// [`UnableToDecryptInfo::time_to_decrypt`].
    fn on_utd(&self, info: UnableToDecryptInfo);
}

/// Information about an event we were unable to decrypt (UTD).
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct UnableToDecryptInfo {
    /// The identifier of the event that couldn't get decrypted.
    pub event_id: OwnedEventId,

    /// If the event could be decrypted late (that is, the event was encrypted
    /// at first, but could be decrypted later on), then this indicates the
    /// time it took to decrypt the event. If it is not set, this is
    /// considered a definite UTD.
    pub time_to_decrypt: Option<Duration>,

    /// What we know about what caused this UTD. E.g. was this event sent when
    /// we were not a member of this room?
    pub cause: UtdCause,
}

/// Data about a UTD event which we are waiting to report to the parent hook.
#[derive(Debug)]
struct PendingUtdReport {
    /// The time that we received the UTD report from the timeline code.
    marked_utd_at: Instant,

    /// The task that will report this UTD to the parent hook.
    report_task: JoinHandle<()>,
}

/// A manager over an existing [`UnableToDecryptHook`] that deduplicates UTDs
/// on similar events, and adds basic consistency checks.
///
/// It can also implement a grace period before reporting an event as a UTD, if
/// configured with [`Self::with_max_delay`]. Instead of immediately reporting
/// the UTD, the reporting will be delayed by the max delay at most; if the
/// event could eventually get decrypted, it may be reported before the end of
/// that delay.
#[derive(Debug)]
pub struct UtdHookManager {
    /// A Client associated with the UTD hook. This is used to access the store
    /// which we persist our data to.
    client: Client,

    /// The parent hook we'll call, when we have found a unique UTD.
    parent: Arc<dyn UnableToDecryptHook>,

    /// An optional delay before marking the event as UTD ("grace period").
    max_delay: Option<Duration>,

    /// A mapping of events we're going to report as UTDs, to the tasks to do
    /// so.
    ///
    /// Note: this is empty if no [`Self::max_delay`] is set.
    ///
    /// Note: this is theoretically unbounded in size, although this set of
    /// tasks will degrow over time, as tasks expire after the max delay.
    pending_delayed: Arc<Mutex<HashMap<OwnedEventId, PendingUtdReport>>>,

    /// Bloom filter containing the event IDs of events which have been reported
    /// as UTDs
    reported_utds: Arc<AsyncMutex<GrowableBloom>>,
}

impl UtdHookManager {
    /// Create a new [`UtdHookManager`] for the given hook.
    ///
    /// A [`Client`] must also be provided; this provides a link to the
    /// [`matrix_sdk_base::StateStore`] which is used to load and store the
    /// persistent data.
    pub fn new(parent: Arc<dyn UnableToDecryptHook>, client: Client) -> Self {
        let bloom_filter =
            // Some slightly arbitrarily-chosen parameters here. We specify that, after 1000
            // UTDs, we want to have a false-positive rate of 1%.
            //
            // The GrowableBloomFilter is based on a series of (partitioned) Bloom filters;
            // once the first starts getting full (the expected false-positive
            // rate gets too high), it adds another Bloom filter. Each new entry
            // is recorded in the most recent Bloom filter; when querying, if
            // *any* of the component filters show a match, that shows
            // an overall match.
            //
            // The first component filter is created based on the parameters we give. For
            // reasons derived in the paper [1], a partitioned Bloom filter with
            // target false-positive rate `P` after `n` insertions requires a
            // number of slices `k` given by:
            //
            // k = log2(1/P) = -ln(P) / ln(2)
            //
            // ... where each slice has a number of bits `m` given by
            //
            // m = n / ln(2)
            //
            // We have to have a whole number of slices and bits, so the total number of
            // bits M is:
            //
            // M = ceil(k) * ceil(m)
            //   = ceil(-ln(P) / ln(2)) * ceil(n / ln(2))
            //
            // In other words, our FP rate of 1% after 1000 insertions requires:
            //
            // M = ceil(-ln(0.01) / ln(2)) * ceil(1000 / ln(2))
            //   = 7 * 1443 = 10101 bits
            //
            // So our filter starts off with 1263 bytes of data (plus a little overhead).
            // Once we hit 1000 UTDs, we add a second component filter with a capacity
            // double that of the original and target error rate 85% of the
            // original (another 2526 bytes), which then lasts us until a total
            // of 3000 UTDs.
            //
            // [1]: https://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
            GrowableBloomBuilder::new().estimated_insertions(1000).desired_error_ratio(0.01).build();

        Self {
            client,
            parent,
            max_delay: None,
            pending_delayed: Default::default(),
            reported_utds: Arc::new(AsyncMutex::new(bloom_filter)),
        }
    }

    /// Reports UTDs with the given max delay.
    ///
    /// Note: late decryptions are always reported, even if there was a grace
    /// period set for the reporting of the UTD.
    pub fn with_max_delay(mut self, delay: Duration) -> Self {
        self.max_delay = Some(delay);
        self
    }

    /// Load the persistent data for the UTD hook from the store.
    ///
    /// If the client previously used a UtdHookManager, and UTDs were
    /// encountered, the data on the reported UTDs is loaded from the store.
    /// Otherwise, there is no effect.
    pub async fn reload_from_store(&mut self) -> Result<(), StoreError> {
        let existing_data =
            self.client.store().get_kv_data(StateStoreDataKey::UtdHookManagerData).await?;

        if let Some(existing_data) = existing_data {
            let bloom_filter = existing_data
                .into_utd_hook_manager_data()
                .expect("StateStore::get_kv_data should return data of the right type");
            self.reported_utds = Arc::new(AsyncMutex::new(bloom_filter));
        }
        Ok(())
    }

    /// The function to call whenever a UTD is seen for the first time.
    ///
    /// Pipe in any information that needs to be included in the final report.
    pub(crate) async fn on_utd(&self, event_id: &EventId, cause: UtdCause) {
        // Hold the lock on `reported_utds` throughout, to avoid races with other
        // threads.
        let mut reported_utds_lock = self.reported_utds.lock().await;

        // Check if this, or a previous instance of UtdHookManager, has already reported
        // this UTD, and bail out if not.
        if reported_utds_lock.contains(event_id) {
            return;
        }

        // Otherwise, check if we already have a task to handle this UTD.
        if self.pending_delayed.lock().unwrap().contains_key(event_id) {
            return;
        }

        let info =
            UnableToDecryptInfo { event_id: event_id.to_owned(), time_to_decrypt: None, cause };

        let Some(max_delay) = self.max_delay else {
            // No delay: immediately report the event to the parent hook.
            Self::report_utd(info, &self.parent, &self.client, &mut reported_utds_lock).await;
            return;
        };

        // Clone data shared with the task below.
        let pending_delayed = self.pending_delayed.clone();
        let reported_utds = self.reported_utds.clone();
        let parent = self.parent.clone();
        let client = self.client.clone();

        // Spawn a task that will wait for the given delay, and maybe call the parent
        // hook then.
        let handle = spawn(async move {
            // Wait for the given delay.
            sleep(max_delay).await;

            // Make sure we take out the lock on `reported_utds` before removing the entry
            // from `pending_delayed`, to ensure we don't race against another call to
            // `on_utd` (which could otherwise see that the entry has been
            // removed from `pending_delayed` but not yet added to
            // `reported_utds`).
            let mut reported_utds_lock = reported_utds.lock().await;

            // Remove the task from the outstanding set. But if it's already been removed,
            // it's been decrypted since the task was added!
            if pending_delayed.lock().unwrap().remove(&info.event_id).is_some() {
                Self::report_utd(info, &parent, &client, &mut reported_utds_lock).await;
            }
        });

        // Add the task to the set of pending tasks.
        self.pending_delayed.lock().unwrap().insert(
            event_id.to_owned(),
            PendingUtdReport { marked_utd_at: Instant::now(), report_task: handle },
        );
    }

    /// The function to call whenever an event that was marked as a UTD has
    /// eventually been decrypted.
    ///
    /// Note: if this is called for an event that was never marked as a UTD
    /// before, it has no effect.
    pub(crate) async fn on_late_decrypt(&self, event_id: &EventId, cause: UtdCause) {
        // Hold the lock on `reported_utds` throughout, to avoid races with other
        // threads.
        let mut reported_utds_lock = self.reported_utds.lock().await;

        // Only let the parent hook know about the late decryption if the event is
        // a pending UTD. If so, remove the event from the pending list —
        // doing so will cause the reporting task to no-op if it runs.
        let Some(pending_utd_report) = self.pending_delayed.lock().unwrap().remove(event_id) else {
            return;
        };

        // We can also cancel the reporting task.
        pending_utd_report.report_task.abort();

        // Now we can report the late decryption.
        let info = UnableToDecryptInfo {
            event_id: event_id.to_owned(),
            time_to_decrypt: Some(pending_utd_report.marked_utd_at.elapsed()),
            cause,
        };
        Self::report_utd(info, &self.parent, &self.client, &mut reported_utds_lock).await;
    }

    /// Helper for [`UtdHookManager::on_utd`] and
    /// [`UtdHookManager.on_late_decrypt`]: reports the UTD to the parent,
    /// and records the event as reported.
    ///
    /// Must be called with the lock held on [`UtdHookManager::reported_utds`],
    /// and takes a `MutexGuard` to enforce that.
    async fn report_utd<'a>(
        info: UnableToDecryptInfo,
        parent_hook: &Arc<dyn UnableToDecryptHook>,
        client: &Client,
        reported_utds_lock: &mut MutexGuard<'a, GrowableBloom>,
    ) {
        let event_id = info.event_id.clone();
        parent_hook.on_utd(info);
        reported_utds_lock.insert(event_id);
        if let Err(e) = client
            .store()
            .set_kv_data(
                StateStoreDataKey::UtdHookManagerData,
                StateStoreDataValue::UtdHookManagerData(reported_utds_lock.clone()),
            )
            .await
        {
            error!("Unable to persist UTD report data: {}", e);
        }
    }
}

impl Drop for UtdHookManager {
    fn drop(&mut self) {
        // Cancel all the outstanding delayed tasks to report UTDs.
        //
        // Here, we don't take the lock on `reported_utd`s (indeed, we can't, since
        // `reported_utds` has an async mutex, and `drop` has to be sync), but
        // that's ok. We can't race against `on_utd` or `on_late_decrypt`, since
        // they both have `&self` references which mean `drop` can't be called.
        // We *could* race against one of the actual tasks to report
        // UTDs, but that's ok too: either the report task will bail out when it sees
        // the entry has been removed from `pending_delayed` (which is fine), or the
        // report task will successfully report the UTD (which is fine).
        let mut pending_delayed = self.pending_delayed.lock().unwrap();
        for (_, pending_utd_report) in pending_delayed.drain() {
            pending_utd_report.report_task.abort();
        }
    }
}

#[cfg(test)]
mod tests {
    use matrix_sdk::test_utils::no_retry_test_client;
    use matrix_sdk_test::async_test;
    use ruma::event_id;

    use super::*;

    #[derive(Debug, Default)]
    struct Dummy {
        utds: Mutex<Vec<UnableToDecryptInfo>>,
    }

    impl UnableToDecryptHook for Dummy {
        fn on_utd(&self, info: UnableToDecryptInfo) {
            self.utds.lock().unwrap().push(info);
        }
    }

    #[async_test]
    async fn test_deduplicates_utds() {
        // If I create a dummy hook,
        let hook = Arc::new(Dummy::default());

        // And I wrap with the UtdHookManager,
        let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);

        // And I call the `on_utd` method multiple times, sometimes on the same event,
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
        wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
        wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;
        wrapper.on_utd(event_id!("$3"), UtdCause::Unknown).await;

        // Then the event ids have been deduplicated,
        {
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 3);
            assert_eq!(utds[0].event_id, event_id!("$1"));
            assert_eq!(utds[1].event_id, event_id!("$2"));
            assert_eq!(utds[2].event_id, event_id!("$3"));

            // No event is a late-decryption event.
            assert!(utds[0].time_to_decrypt.is_none());
            assert!(utds[1].time_to_decrypt.is_none());
            assert!(utds[2].time_to_decrypt.is_none());
        }
    }

    #[async_test]
    async fn test_deduplicates_utds_from_previous_session() {
        // Use a single client for both hooks, so that both hooks are backed by the same
        // memorystore.
        let client = no_retry_test_client(None).await;

        // Dummy hook 1, with the first UtdHookManager
        {
            let hook = Arc::new(Dummy::default());
            let wrapper = UtdHookManager::new(hook.clone(), client.clone());

            // I call it a couple of times with different events
            wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
            wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;

            // Sanity-check the reported event IDs
            {
                let utds = hook.utds.lock().unwrap();
                assert_eq!(utds.len(), 2);
                assert_eq!(utds[0].event_id, event_id!("$1"));
                assert!(utds[0].time_to_decrypt.is_none());
                assert_eq!(utds[1].event_id, event_id!("$2"));
                assert!(utds[1].time_to_decrypt.is_none());
            }
        }

        // Now, create a *new* hook, with a *new* UtdHookManager
        {
            let hook = Arc::new(Dummy::default());
            let mut wrapper = UtdHookManager::new(hook.clone(), client.clone());
            wrapper.reload_from_store().await.unwrap();

            // Call it with more events, some of which match the previous instance
            wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
            wrapper.on_utd(event_id!("$3"), UtdCause::Unknown).await;

            // Only the *new* ones should be reported
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);
            assert_eq!(utds[0].event_id, event_id!("$3"));
        }
    }

    /// Test that UTD events which had not yet been reported in a previous
    /// session, are reported in the next session.
    #[async_test]
    async fn test_does_not_deduplicate_late_utds_from_previous_session() {
        // Use a single client for both hooks, so that both hooks are backed by the same
        // memorystore.
        let client = no_retry_test_client(None).await;

        // Dummy hook 1, with the first UtdHookManager
        {
            let hook = Arc::new(Dummy::default());
            let wrapper = UtdHookManager::new(hook.clone(), client.clone())
                .with_max_delay(Duration::from_secs(2));

            // a UTD event
            wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;

            // The event ID should not yet have been reported.
            {
                let utds = hook.utds.lock().unwrap();
                assert_eq!(utds.len(), 0);
            }
        }

        // Now, create a *new* hook, with a *new* UtdHookManager
        {
            let hook = Arc::new(Dummy::default());
            let mut wrapper = UtdHookManager::new(hook.clone(), client.clone());
            wrapper.reload_from_store().await.unwrap();

            // Call the new hook with the same event
            wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;

            // And it should be reported.
            sleep(Duration::from_millis(2500)).await;

            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);
            assert_eq!(utds[0].event_id, event_id!("$1"));
        }
    }

    #[async_test]
    async fn test_on_late_decrypted_no_effect() {
        // If I create a dummy hook,
        let hook = Arc::new(Dummy::default());

        // And I wrap with the UtdHookManager,
        let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);

        // And I call the `on_late_decrypt` method before the event had been marked as
        // utd,
        wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;

        // Then nothing is registered in the parent hook.
        assert!(hook.utds.lock().unwrap().is_empty());
    }

    #[async_test]
    async fn test_on_late_decrypted_after_utd_no_grace_period() {
        // If I create a dummy hook,
        let hook = Arc::new(Dummy::default());

        // And I wrap with the UtdHookManager,
        let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);

        // And I call the `on_utd` method for an event,
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;

        // Then the UTD has been notified, but not as late-decrypted event.
        {
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);
            assert_eq!(utds[0].event_id, event_id!("$1"));
            assert!(utds[0].time_to_decrypt.is_none());
        }

        // And when I call the `on_late_decrypt` method,
        wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;

        // Then the event is not reported again as a late-decryption.
        {
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);

            // The previous report is still there. (There was no grace period.)
            assert_eq!(utds[0].event_id, event_id!("$1"));
            assert!(utds[0].time_to_decrypt.is_none());
        }
    }

    #[cfg(not(target_arch = "wasm32"))] // wasm32 has no time for that
    #[async_test]
    async fn test_delayed_utd() {
        // If I create a dummy hook,
        let hook = Arc::new(Dummy::default());

        // And I wrap with the UtdHookManager, configured to delay reporting after 2
        // seconds.
        let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await)
            .with_max_delay(Duration::from_secs(2));

        // And I call the `on_utd` method for an event,
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;

        // Then the UTD is not being reported immediately.
        assert!(hook.utds.lock().unwrap().is_empty());
        assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);

        // If I wait for 1 second, then it's still not been notified yet.
        sleep(Duration::from_secs(1)).await;

        assert!(hook.utds.lock().unwrap().is_empty());
        assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);

        // But if I wait just a bit more, then it's getting notified as a definite UTD.
        sleep(Duration::from_millis(1500)).await;

        {
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);
            assert_eq!(utds[0].event_id, event_id!("$1"));
            assert!(utds[0].time_to_decrypt.is_none());
        }

        assert!(wrapper.pending_delayed.lock().unwrap().is_empty());
    }

    #[cfg(not(target_arch = "wasm32"))] // wasm32 has no time for that
    #[async_test]
    async fn test_delayed_late_decryption() {
        // If I create a dummy hook,
        let hook = Arc::new(Dummy::default());

        // And I wrap with the UtdHookManager, configured to delay reporting after 2
        // seconds.
        let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await)
            .with_max_delay(Duration::from_secs(2));

        // And I call the `on_utd` method for an event,
        wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;

        // Then the UTD has not been notified quite yet.
        assert!(hook.utds.lock().unwrap().is_empty());
        assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);

        // If I wait for 1 second, and mark the event as late-decrypted,
        sleep(Duration::from_secs(1)).await;

        wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;

        // Then it's being immediately reported as a late-decryption UTD.
        {
            let utds = hook.utds.lock().unwrap();
            assert_eq!(utds.len(), 1);
            assert_eq!(utds[0].event_id, event_id!("$1"));
            assert!(utds[0].time_to_decrypt.is_some());
        }

        // And there aren't any pending delayed reports anymore.
        assert!(wrapper.pending_delayed.lock().unwrap().is_empty());
    }
}