matrix_sdk_crypto/store/caches.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Collection of small in-memory stores that can be used to cache Olm objects.
//!
//! Note: You'll only be interested in these if you are implementing a custom
//! `CryptoStore`.
use std::{
collections::{BTreeMap, HashMap, HashSet},
fmt::Display,
sync::{
atomic::{AtomicBool, Ordering},
Arc, RwLock as StdRwLock, Weak,
},
};
use ruma::{DeviceId, OwnedDeviceId, OwnedRoomId, OwnedUserId, RoomId, UserId};
use serde::{Deserialize, Serialize};
use tokio::sync::{Mutex, RwLock};
use tracing::{field::display, instrument, trace, Span};
use crate::{
identities::DeviceData,
olm::{InboundGroupSession, Session},
};
/// In-memory store for Olm Sessions.
#[derive(Debug, Default, Clone)]
pub struct SessionStore {
#[allow(clippy::type_complexity)]
pub(crate) entries: Arc<RwLock<BTreeMap<String, Arc<Mutex<Vec<Session>>>>>>,
}
impl SessionStore {
/// Create a new empty Session store.
pub fn new() -> Self {
Self::default()
}
/// Clear all entries in the session store.
///
/// This is intended to be used when regenerating olm machines.
pub async fn clear(&self) {
self.entries.write().await.clear()
}
/// Add a session to the store.
///
/// Returns true if the session was added, false if the session was
/// already in the store.
pub async fn add(&self, session: Session) -> bool {
let sessions_lock =
self.entries.write().await.entry(session.sender_key.to_base64()).or_default().clone();
let mut sessions = sessions_lock.lock().await;
if !sessions.contains(&session) {
sessions.push(session);
true
} else {
false
}
}
/// Get all the sessions that belong to the given sender key.
pub async fn get(&self, sender_key: &str) -> Option<Arc<Mutex<Vec<Session>>>> {
self.entries.read().await.get(sender_key).cloned()
}
/// Add a list of sessions belonging to the sender key.
pub async fn set_for_sender(&self, sender_key: &str, sessions: Vec<Session>) {
self.entries.write().await.insert(sender_key.to_owned(), Arc::new(Mutex::new(sessions)));
}
}
#[derive(Debug, Default)]
/// In-memory store that holds inbound group sessions.
pub struct GroupSessionStore {
entries: StdRwLock<BTreeMap<OwnedRoomId, HashMap<String, InboundGroupSession>>>,
}
impl GroupSessionStore {
/// Create a new empty store.
pub fn new() -> Self {
Self::default()
}
/// Add an inbound group session to the store.
///
/// Returns true if the session was added, false if the session was
/// already in the store.
pub fn add(&self, session: InboundGroupSession) -> bool {
self.entries
.write()
.unwrap()
.entry(session.room_id().to_owned())
.or_default()
.insert(session.session_id().to_owned(), session)
.is_none()
}
/// Get all the group sessions the store knows about.
pub fn get_all(&self) -> Vec<InboundGroupSession> {
self.entries.read().unwrap().values().flat_map(HashMap::values).cloned().collect()
}
/// Get the number of `InboundGroupSession`s we have.
pub fn count(&self) -> usize {
self.entries.read().unwrap().values().map(HashMap::len).sum()
}
/// Get a inbound group session from our store.
///
/// # Arguments
/// * `room_id` - The room id of the room that the session belongs to.
///
/// * `session_id` - The unique id of the session.
pub fn get(&self, room_id: &RoomId, session_id: &str) -> Option<InboundGroupSession> {
self.entries.read().unwrap().get(room_id)?.get(session_id).cloned()
}
}
/// In-memory store holding the devices of users.
#[derive(Debug, Default)]
pub struct DeviceStore {
entries: StdRwLock<BTreeMap<OwnedUserId, BTreeMap<OwnedDeviceId, DeviceData>>>,
}
impl DeviceStore {
/// Create a new empty device store.
pub fn new() -> Self {
Self::default()
}
/// Add a device to the store.
///
/// Returns true if the device was already in the store, false otherwise.
pub fn add(&self, device: DeviceData) -> bool {
let user_id = device.user_id();
self.entries
.write()
.unwrap()
.entry(user_id.to_owned())
.or_default()
.insert(device.device_id().into(), device)
.is_none()
}
/// Get the device with the given device_id and belonging to the given user.
pub fn get(&self, user_id: &UserId, device_id: &DeviceId) -> Option<DeviceData> {
Some(self.entries.read().unwrap().get(user_id)?.get(device_id)?.clone())
}
/// Remove the device with the given device_id and belonging to the given
/// user.
///
/// Returns the device if it was removed, None if it wasn't in the store.
pub fn remove(&self, user_id: &UserId, device_id: &DeviceId) -> Option<DeviceData> {
self.entries.write().unwrap().get_mut(user_id)?.remove(device_id)
}
/// Get a read-only view over all devices of the given user.
pub fn user_devices(&self, user_id: &UserId) -> HashMap<OwnedDeviceId, DeviceData> {
self.entries
.write()
.unwrap()
.entry(user_id.to_owned())
.or_default()
.iter()
.map(|(key, value)| (key.to_owned(), value.clone()))
.collect()
}
}
/// A numeric type that can represent an infinite ordered sequence.
///
/// It uses wrapping arithmetic to make sure we never run out of numbers. (2**64
/// should be enough for anyone, but it's easy enough just to make it wrap.)
//
/// Internally it uses a *signed* counter so that we can compare values via a
/// subtraction. For example, suppose we've just overflowed from i64::MAX to
/// i64::MIN. (i64::MAX.wrapping_sub(i64::MIN)) is -1, which tells us that
/// i64::MAX comes before i64::MIN in the sequence.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Deserialize, Serialize)]
#[serde(transparent)]
pub struct SequenceNumber(i64);
impl Display for SequenceNumber {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl PartialOrd for SequenceNumber {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.0.wrapping_sub(other.0).cmp(&0))
}
}
impl Ord for SequenceNumber {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.wrapping_sub(other.0).cmp(&0)
}
}
impl SequenceNumber {
pub(crate) fn increment(&mut self) {
self.0 = self.0.wrapping_add(1)
}
fn previous(&self) -> Self {
Self(self.0.wrapping_sub(1))
}
}
/// Information on a task which is waiting for a `/keys/query` to complete.
#[derive(Debug)]
pub(super) struct KeysQueryWaiter {
/// The user that we are waiting for
user: OwnedUserId,
/// The sequence number of the last invalidation of the users's device list
/// when we started waiting (ie, any `/keys/query` result with the same or
/// greater sequence number will satisfy this waiter)
sequence_number: SequenceNumber,
/// Whether the `/keys/query` has completed.
///
/// This is only modified whilst holding the mutex on `users_for_key_query`.
pub(super) completed: AtomicBool,
}
/// Record of the users that are waiting for a /keys/query.
///
/// To avoid races, we maintain a sequence number which is updated each time we
/// receive an invalidation notification. We also record the sequence number at
/// which each user was last invalidated. Then, we attach the current sequence
/// number to each `/keys/query` request, and when we get the response we can
/// tell if any users have been invalidated more recently than that request.
#[derive(Debug, Default)]
pub(super) struct UsersForKeyQuery {
/// The sequence number we will assign to the next addition to user_map
next_sequence_number: SequenceNumber,
/// The users pending a lookup, together with the sequence number at which
/// they were added to the list
user_map: HashMap<OwnedUserId, SequenceNumber>,
/// A list of tasks waiting for key queries to complete.
///
/// We expect this list to remain fairly short, so don't bother partitioning
/// by user.
tasks_awaiting_key_query: Vec<Weak<KeysQueryWaiter>>,
}
impl UsersForKeyQuery {
/// Record a new user that requires a key query
pub(super) fn insert_user(&mut self, user: &UserId) {
let sequence_number = self.next_sequence_number;
trace!(?user, %sequence_number, "Flagging user for key query");
self.user_map.insert(user.to_owned(), sequence_number);
self.next_sequence_number.increment();
}
/// Record that a user has received an update with the given sequence
/// number.
///
/// If the sequence number is newer than the oldest invalidation for this
/// user, it is removed from the list of those needing an update.
///
/// Returns true if the user is now up-to-date, else false
#[instrument(level = "trace", skip(self), fields(invalidation_sequence))]
pub(super) fn maybe_remove_user(
&mut self,
user: &UserId,
query_sequence: SequenceNumber,
) -> bool {
let last_invalidation = self.user_map.get(user).copied();
// If there were any jobs waiting for this key query to complete, we can flag
// them as completed and remove them from our list. We also clear out any tasks
// that have been cancelled.
self.tasks_awaiting_key_query.retain(|waiter| {
let Some(waiter) = waiter.upgrade() else {
// the TaskAwaitingKeyQuery has been dropped, so it probably timed out and the
// caller went away. We can remove it from our list whether or not it's for this
// user.
trace!("removing expired waiting task");
return false;
};
if waiter.user == user && waiter.sequence_number <= query_sequence {
trace!(
?user,
%query_sequence,
waiter_sequence = %waiter.sequence_number,
"Removing completed waiting task"
);
waiter.completed.store(true, Ordering::Relaxed);
false
} else {
trace!(
?user,
%query_sequence,
waiter_user = ?waiter.user,
waiter_sequence= %waiter.sequence_number,
"Retaining still-waiting task"
);
true
}
});
if let Some(last_invalidation) = last_invalidation {
Span::current().record("invalidation_sequence", display(last_invalidation));
if last_invalidation > query_sequence {
trace!("User invalidated since this query started: still not up-to-date");
false
} else {
trace!("User now up-to-date");
self.user_map.remove(user);
true
}
} else {
trace!("User already up-to-date, nothing to do");
true
}
}
/// Fetch the list of users waiting for a key query, and the current
/// sequence number
pub(super) fn users_for_key_query(&self) -> (HashSet<OwnedUserId>, SequenceNumber) {
// we return the sequence number of the last invalidation
let sequence_number = self.next_sequence_number.previous();
(self.user_map.keys().cloned().collect(), sequence_number)
}
/// Check if a key query is pending for a user, and register for a wakeup if
/// so.
///
/// If no key query is currently pending, returns `None`. Otherwise, returns
/// (an `Arc` to) a `KeysQueryWaiter`, whose `completed` flag will
/// be set once the lookup completes.
pub(super) fn maybe_register_waiting_task(
&mut self,
user: &UserId,
) -> Option<Arc<KeysQueryWaiter>> {
self.user_map.get(user).map(|&sequence_number| {
trace!(?user, %sequence_number, "Registering new waiting task");
let waiter = Arc::new(KeysQueryWaiter {
sequence_number,
user: user.to_owned(),
completed: AtomicBool::new(false),
});
self.tasks_awaiting_key_query.push(Arc::downgrade(&waiter));
waiter
})
}
}
#[cfg(test)]
mod tests {
use matrix_sdk_test::async_test;
use proptest::prelude::*;
use ruma::room_id;
use vodozemac::{Curve25519PublicKey, Ed25519PublicKey};
use super::{DeviceStore, GroupSessionStore, SequenceNumber, SessionStore};
use crate::{
identities::device::testing::get_device,
olm::{tests::get_account_and_session_test_helper, InboundGroupSession, SenderData},
};
#[async_test]
async fn test_session_store() {
let (_, session) = get_account_and_session_test_helper();
let store = SessionStore::new();
assert!(store.add(session.clone()).await);
assert!(!store.add(session.clone()).await);
let sessions = store.get(&session.sender_key.to_base64()).await.unwrap();
let sessions = sessions.lock().await;
let loaded_session = &sessions[0];
assert_eq!(&session, loaded_session);
}
#[async_test]
async fn test_session_store_bulk_storing() {
let (_, session) = get_account_and_session_test_helper();
let store = SessionStore::new();
store.set_for_sender(&session.sender_key.to_base64(), vec![session.clone()]).await;
let sessions = store.get(&session.sender_key.to_base64()).await.unwrap();
let sessions = sessions.lock().await;
let loaded_session = &sessions[0];
assert_eq!(&session, loaded_session);
}
#[async_test]
async fn test_group_session_store() {
let (account, _) = get_account_and_session_test_helper();
let room_id = room_id!("!test:localhost");
let curve_key = "Nn0L2hkcCMFKqynTjyGsJbth7QrVmX3lbrksMkrGOAw";
let (outbound, _) = account.create_group_session_pair_with_defaults(room_id).await;
assert_eq!(0, outbound.message_index().await);
assert!(!outbound.shared());
outbound.mark_as_shared();
assert!(outbound.shared());
let inbound = InboundGroupSession::new(
Curve25519PublicKey::from_base64(curve_key).unwrap(),
Ed25519PublicKey::from_base64("ee3Ek+J2LkkPmjGPGLhMxiKnhiX//xcqaVL4RP6EypE").unwrap(),
room_id,
&outbound.session_key().await,
SenderData::unknown(),
outbound.settings().algorithm.to_owned(),
None,
)
.unwrap();
let store = GroupSessionStore::new();
store.add(inbound.clone());
let loaded_session = store.get(room_id, outbound.session_id()).unwrap();
assert_eq!(inbound, loaded_session);
}
#[async_test]
async fn test_device_store() {
let device = get_device();
let store = DeviceStore::new();
assert!(store.add(device.clone()));
assert!(!store.add(device.clone()));
let loaded_device = store.get(device.user_id(), device.device_id()).unwrap();
assert_eq!(device, loaded_device);
let user_devices = store.user_devices(device.user_id());
assert_eq!(&**user_devices.keys().next().unwrap(), device.device_id());
assert_eq!(user_devices.values().next().unwrap(), &device);
let loaded_device = user_devices.get(device.device_id()).unwrap();
assert_eq!(&device, loaded_device);
store.remove(device.user_id(), device.device_id());
let loaded_device = store.get(device.user_id(), device.device_id());
assert!(loaded_device.is_none());
}
#[test]
fn sequence_at_boundary() {
let first = SequenceNumber(i64::MAX);
let second = SequenceNumber(first.0.wrapping_add(1));
let third = SequenceNumber(first.0.wrapping_sub(1));
assert!(second > first);
assert!(first < second);
assert!(third < first);
assert!(first > third);
assert!(second > third);
assert!(third < second);
}
proptest! {
#[test]
fn partial_eq_sequence_number(sequence in i64::MIN..i64::MAX) {
let first = SequenceNumber(sequence);
let second = SequenceNumber(first.0.wrapping_add(1));
let third = SequenceNumber(first.0.wrapping_sub(1));
assert!(second > first);
assert!(first < second);
assert!(third < first);
assert!(first > third);
assert!(second > third);
assert!(third < second);
}
}
}