matrix_sdk_crypto/store/
caches.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Collection of small in-memory stores that can be used to cache Olm objects.
//!
//! Note: You'll only be interested in these if you are implementing a custom
//! `CryptoStore`.

use std::{
    collections::{BTreeMap, HashMap, HashSet},
    fmt::Display,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc, RwLock as StdRwLock, Weak,
    },
};

use ruma::{DeviceId, OwnedDeviceId, OwnedRoomId, OwnedUserId, RoomId, UserId};
use serde::{Deserialize, Serialize};
use tokio::sync::{Mutex, RwLock};
use tracing::{field::display, instrument, trace, Span};

use crate::{
    identities::DeviceData,
    olm::{InboundGroupSession, Session},
};

/// In-memory store for Olm Sessions.
#[derive(Debug, Default, Clone)]
pub struct SessionStore {
    #[allow(clippy::type_complexity)]
    pub(crate) entries: Arc<RwLock<BTreeMap<String, Arc<Mutex<Vec<Session>>>>>>,
}

impl SessionStore {
    /// Create a new empty Session store.
    pub fn new() -> Self {
        Self::default()
    }

    /// Clear all entries in the session store.
    ///
    /// This is intended to be used when regenerating olm machines.
    pub async fn clear(&self) {
        self.entries.write().await.clear()
    }

    /// Add a session to the store.
    ///
    /// Returns true if the session was added, false if the session was
    /// already in the store.
    pub async fn add(&self, session: Session) -> bool {
        let sessions_lock =
            self.entries.write().await.entry(session.sender_key.to_base64()).or_default().clone();

        let mut sessions = sessions_lock.lock().await;

        if !sessions.contains(&session) {
            sessions.push(session);
            true
        } else {
            false
        }
    }

    /// Get all the sessions that belong to the given sender key.
    pub async fn get(&self, sender_key: &str) -> Option<Arc<Mutex<Vec<Session>>>> {
        self.entries.read().await.get(sender_key).cloned()
    }

    /// Add a list of sessions belonging to the sender key.
    pub async fn set_for_sender(&self, sender_key: &str, sessions: Vec<Session>) {
        self.entries.write().await.insert(sender_key.to_owned(), Arc::new(Mutex::new(sessions)));
    }
}

#[derive(Debug, Default)]
/// In-memory store that holds inbound group sessions.
pub struct GroupSessionStore {
    entries: StdRwLock<BTreeMap<OwnedRoomId, HashMap<String, InboundGroupSession>>>,
}

impl GroupSessionStore {
    /// Create a new empty store.
    pub fn new() -> Self {
        Self::default()
    }

    /// Add an inbound group session to the store.
    ///
    /// Returns true if the session was added, false if the session was
    /// already in the store.
    pub fn add(&self, session: InboundGroupSession) -> bool {
        self.entries
            .write()
            .unwrap()
            .entry(session.room_id().to_owned())
            .or_default()
            .insert(session.session_id().to_owned(), session)
            .is_none()
    }

    /// Get all the group sessions the store knows about.
    pub fn get_all(&self) -> Vec<InboundGroupSession> {
        self.entries.read().unwrap().values().flat_map(HashMap::values).cloned().collect()
    }

    /// Get the number of `InboundGroupSession`s we have.
    pub fn count(&self) -> usize {
        self.entries.read().unwrap().values().map(HashMap::len).sum()
    }

    /// Get a inbound group session from our store.
    ///
    /// # Arguments
    /// * `room_id` - The room id of the room that the session belongs to.
    ///
    /// * `session_id` - The unique id of the session.
    pub fn get(&self, room_id: &RoomId, session_id: &str) -> Option<InboundGroupSession> {
        self.entries.read().unwrap().get(room_id)?.get(session_id).cloned()
    }
}

/// In-memory store holding the devices of users.
#[derive(Debug, Default)]
pub struct DeviceStore {
    entries: StdRwLock<BTreeMap<OwnedUserId, BTreeMap<OwnedDeviceId, DeviceData>>>,
}

impl DeviceStore {
    /// Create a new empty device store.
    pub fn new() -> Self {
        Self::default()
    }

    /// Add a device to the store.
    ///
    /// Returns true if the device was already in the store, false otherwise.
    pub fn add(&self, device: DeviceData) -> bool {
        let user_id = device.user_id();
        self.entries
            .write()
            .unwrap()
            .entry(user_id.to_owned())
            .or_default()
            .insert(device.device_id().into(), device)
            .is_none()
    }

    /// Get the device with the given device_id and belonging to the given user.
    pub fn get(&self, user_id: &UserId, device_id: &DeviceId) -> Option<DeviceData> {
        Some(self.entries.read().unwrap().get(user_id)?.get(device_id)?.clone())
    }

    /// Remove the device with the given device_id and belonging to the given
    /// user.
    ///
    /// Returns the device if it was removed, None if it wasn't in the store.
    pub fn remove(&self, user_id: &UserId, device_id: &DeviceId) -> Option<DeviceData> {
        self.entries.write().unwrap().get_mut(user_id)?.remove(device_id)
    }

    /// Get a read-only view over all devices of the given user.
    pub fn user_devices(&self, user_id: &UserId) -> HashMap<OwnedDeviceId, DeviceData> {
        self.entries
            .write()
            .unwrap()
            .entry(user_id.to_owned())
            .or_default()
            .iter()
            .map(|(key, value)| (key.to_owned(), value.clone()))
            .collect()
    }
}

/// A numeric type that can represent an infinite ordered sequence.
///
/// It uses wrapping arithmetic to make sure we never run out of numbers. (2**64
/// should be enough for anyone, but it's easy enough just to make it wrap.)
//
/// Internally it uses a *signed* counter so that we can compare values via a
/// subtraction. For example, suppose we've just overflowed from i64::MAX to
/// i64::MIN. (i64::MAX.wrapping_sub(i64::MIN)) is -1, which tells us that
/// i64::MAX comes before i64::MIN in the sequence.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Deserialize, Serialize)]
#[serde(transparent)]
pub struct SequenceNumber(i64);

impl Display for SequenceNumber {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.fmt(f)
    }
}

impl PartialOrd for SequenceNumber {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.0.wrapping_sub(other.0).cmp(&0))
    }
}

impl Ord for SequenceNumber {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.wrapping_sub(other.0).cmp(&0)
    }
}

impl SequenceNumber {
    pub(crate) fn increment(&mut self) {
        self.0 = self.0.wrapping_add(1)
    }

    fn previous(&self) -> Self {
        Self(self.0.wrapping_sub(1))
    }
}

/// Information on a task which is waiting for a `/keys/query` to complete.
#[derive(Debug)]
pub(super) struct KeysQueryWaiter {
    /// The user that we are waiting for
    user: OwnedUserId,

    /// The sequence number of the last invalidation of the users's device list
    /// when we started waiting (ie, any `/keys/query` result with the same or
    /// greater sequence number will satisfy this waiter)
    sequence_number: SequenceNumber,

    /// Whether the `/keys/query` has completed.
    ///
    /// This is only modified whilst holding the mutex on `users_for_key_query`.
    pub(super) completed: AtomicBool,
}

/// Record of the users that are waiting for a /keys/query.
///
/// To avoid races, we maintain a sequence number which is updated each time we
/// receive an invalidation notification. We also record the sequence number at
/// which each user was last invalidated. Then, we attach the current sequence
/// number to each `/keys/query` request, and when we get the response we can
/// tell if any users have been invalidated more recently than that request.
#[derive(Debug, Default)]
pub(super) struct UsersForKeyQuery {
    /// The sequence number we will assign to the next addition to user_map
    next_sequence_number: SequenceNumber,

    /// The users pending a lookup, together with the sequence number at which
    /// they were added to the list
    user_map: HashMap<OwnedUserId, SequenceNumber>,

    /// A list of tasks waiting for key queries to complete.
    ///
    /// We expect this list to remain fairly short, so don't bother partitioning
    /// by user.
    tasks_awaiting_key_query: Vec<Weak<KeysQueryWaiter>>,
}

impl UsersForKeyQuery {
    /// Record a new user that requires a key query
    pub(super) fn insert_user(&mut self, user: &UserId) {
        let sequence_number = self.next_sequence_number;

        trace!(?user, %sequence_number, "Flagging user for key query");

        self.user_map.insert(user.to_owned(), sequence_number);
        self.next_sequence_number.increment();
    }

    /// Record that a user has received an update with the given sequence
    /// number.
    ///
    /// If the sequence number is newer than the oldest invalidation for this
    /// user, it is removed from the list of those needing an update.
    ///
    /// Returns true if the user is now up-to-date, else false
    #[instrument(level = "trace", skip(self), fields(invalidation_sequence))]
    pub(super) fn maybe_remove_user(
        &mut self,
        user: &UserId,
        query_sequence: SequenceNumber,
    ) -> bool {
        let last_invalidation = self.user_map.get(user).copied();

        // If there were any jobs waiting for this key query to complete, we can flag
        // them as completed and remove them from our list. We also clear out any tasks
        // that have been cancelled.
        self.tasks_awaiting_key_query.retain(|waiter| {
            let Some(waiter) = waiter.upgrade() else {
                // the TaskAwaitingKeyQuery has been dropped, so it probably timed out and the
                // caller went away. We can remove it from our list whether or not it's for this
                // user.
                trace!("removing expired waiting task");

                return false;
            };

            if waiter.user == user && waiter.sequence_number <= query_sequence {
                trace!(
                    ?user,
                    %query_sequence,
                    waiter_sequence = %waiter.sequence_number,
                    "Removing completed waiting task"
                );

                waiter.completed.store(true, Ordering::Relaxed);

                false
            } else {
                trace!(
                    ?user,
                    %query_sequence,
                    waiter_user = ?waiter.user,
                    waiter_sequence= %waiter.sequence_number,
                    "Retaining still-waiting task"
                );

                true
            }
        });

        if let Some(last_invalidation) = last_invalidation {
            Span::current().record("invalidation_sequence", display(last_invalidation));

            if last_invalidation > query_sequence {
                trace!("User invalidated since this query started: still not up-to-date");
                false
            } else {
                trace!("User now up-to-date");
                self.user_map.remove(user);
                true
            }
        } else {
            trace!("User already up-to-date, nothing to do");
            true
        }
    }

    /// Fetch the list of users waiting for a key query, and the current
    /// sequence number
    pub(super) fn users_for_key_query(&self) -> (HashSet<OwnedUserId>, SequenceNumber) {
        // we return the sequence number of the last invalidation
        let sequence_number = self.next_sequence_number.previous();
        (self.user_map.keys().cloned().collect(), sequence_number)
    }

    /// Check if a key query is pending for a user, and register for a wakeup if
    /// so.
    ///
    /// If no key query is currently pending, returns `None`. Otherwise, returns
    /// (an `Arc` to) a `KeysQueryWaiter`, whose `completed` flag will
    /// be set once the lookup completes.
    pub(super) fn maybe_register_waiting_task(
        &mut self,
        user: &UserId,
    ) -> Option<Arc<KeysQueryWaiter>> {
        self.user_map.get(user).map(|&sequence_number| {
            trace!(?user, %sequence_number, "Registering new waiting task");

            let waiter = Arc::new(KeysQueryWaiter {
                sequence_number,
                user: user.to_owned(),
                completed: AtomicBool::new(false),
            });

            self.tasks_awaiting_key_query.push(Arc::downgrade(&waiter));

            waiter
        })
    }
}

#[cfg(test)]
mod tests {
    use matrix_sdk_test::async_test;
    use proptest::prelude::*;
    use ruma::room_id;
    use vodozemac::{Curve25519PublicKey, Ed25519PublicKey};

    use super::{DeviceStore, GroupSessionStore, SequenceNumber, SessionStore};
    use crate::{
        identities::device::testing::get_device,
        olm::{tests::get_account_and_session_test_helper, InboundGroupSession, SenderData},
    };

    #[async_test]
    async fn test_session_store() {
        let (_, session) = get_account_and_session_test_helper();

        let store = SessionStore::new();

        assert!(store.add(session.clone()).await);
        assert!(!store.add(session.clone()).await);

        let sessions = store.get(&session.sender_key.to_base64()).await.unwrap();
        let sessions = sessions.lock().await;

        let loaded_session = &sessions[0];

        assert_eq!(&session, loaded_session);
    }

    #[async_test]
    async fn test_session_store_bulk_storing() {
        let (_, session) = get_account_and_session_test_helper();

        let store = SessionStore::new();
        store.set_for_sender(&session.sender_key.to_base64(), vec![session.clone()]).await;

        let sessions = store.get(&session.sender_key.to_base64()).await.unwrap();
        let sessions = sessions.lock().await;

        let loaded_session = &sessions[0];

        assert_eq!(&session, loaded_session);
    }

    #[async_test]
    async fn test_group_session_store() {
        let (account, _) = get_account_and_session_test_helper();
        let room_id = room_id!("!test:localhost");
        let curve_key = "Nn0L2hkcCMFKqynTjyGsJbth7QrVmX3lbrksMkrGOAw";

        let (outbound, _) = account.create_group_session_pair_with_defaults(room_id).await;

        assert_eq!(0, outbound.message_index().await);
        assert!(!outbound.shared());
        outbound.mark_as_shared();
        assert!(outbound.shared());

        let inbound = InboundGroupSession::new(
            Curve25519PublicKey::from_base64(curve_key).unwrap(),
            Ed25519PublicKey::from_base64("ee3Ek+J2LkkPmjGPGLhMxiKnhiX//xcqaVL4RP6EypE").unwrap(),
            room_id,
            &outbound.session_key().await,
            SenderData::unknown(),
            outbound.settings().algorithm.to_owned(),
            None,
        )
        .unwrap();

        let store = GroupSessionStore::new();
        store.add(inbound.clone());

        let loaded_session = store.get(room_id, outbound.session_id()).unwrap();
        assert_eq!(inbound, loaded_session);
    }

    #[async_test]
    async fn test_device_store() {
        let device = get_device();
        let store = DeviceStore::new();

        assert!(store.add(device.clone()));
        assert!(!store.add(device.clone()));

        let loaded_device = store.get(device.user_id(), device.device_id()).unwrap();

        assert_eq!(device, loaded_device);

        let user_devices = store.user_devices(device.user_id());

        assert_eq!(&**user_devices.keys().next().unwrap(), device.device_id());
        assert_eq!(user_devices.values().next().unwrap(), &device);

        let loaded_device = user_devices.get(device.device_id()).unwrap();

        assert_eq!(&device, loaded_device);

        store.remove(device.user_id(), device.device_id());

        let loaded_device = store.get(device.user_id(), device.device_id());
        assert!(loaded_device.is_none());
    }

    #[test]
    fn sequence_at_boundary() {
        let first = SequenceNumber(i64::MAX);
        let second = SequenceNumber(first.0.wrapping_add(1));
        let third = SequenceNumber(first.0.wrapping_sub(1));

        assert!(second > first);
        assert!(first < second);
        assert!(third < first);
        assert!(first > third);
        assert!(second > third);
        assert!(third < second);
    }

    proptest! {
        #[test]
        fn partial_eq_sequence_number(sequence in i64::MIN..i64::MAX) {
            let first = SequenceNumber(sequence);
            let second = SequenceNumber(first.0.wrapping_add(1));
            let third = SequenceNumber(first.0.wrapping_sub(1));

            assert!(second > first);
            assert!(first < second);
            assert!(third < first);
            assert!(first > third);
            assert!(second > third);
            assert!(third < second);
        }
    }
}