1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{
collections::VecDeque,
ops::{ControlFlow, Not},
sync::{Arc, RwLock},
};
use eyeball_im::VectorDiff;
use super::{
updates::{ReaderToken, Update, UpdatesInner},
ChunkContent, ChunkIdentifier, Iter, Position,
};
/// A type alias to represent a chunk's length. This is purely for commodity.
type ChunkLength = usize;
/// A type that transforms a `Vec<Update<Item, Gap>>` (given by
/// [`ObservableUpdates::take`](super::ObservableUpdates::take)) into a
/// `Vec<VectorDiff<Item>>` (this type). Basically, it helps to consume a
/// [`LinkedChunk<CAP, Item, Gap>`](super::LinkedChunk) as if it was an
/// [`eyeball_im::ObservableVector<Item>`].
#[derive(Debug)]
pub struct AsVector<Item, Gap> {
/// Strong reference to [`UpdatesInner`].
updates: Arc<RwLock<UpdatesInner<Item, Gap>>>,
/// The token to read the updates.
token: ReaderToken,
/// Mapper from `Update` to `VectorDiff`.
mapper: UpdateToVectorDiff,
}
impl<Item, Gap> AsVector<Item, Gap> {
/// Create a new [`AsVector`].
///
/// `updates` is the inner value of
/// [`ObservableUpdates`][super::updates::ObservableUpdates].
/// It's required to read the new [`Update`]s. `token` is the
/// [`ReaderToken`] necessary for this type to read the [`Update`]s.
/// `chunk_iterator` is the iterator of all [`Chunk`](super::Chunk)s, used
/// to set up its internal state.
pub(super) fn new<const CAP: usize>(
updates: Arc<RwLock<UpdatesInner<Item, Gap>>>,
token: ReaderToken,
chunk_iterator: Iter<'_, CAP, Item, Gap>,
) -> Self {
// Drain previous updates so that this type is synced with `Updates`.
{
let mut updates = updates.write().unwrap();
let _ = updates.take_with_token(token);
}
Self { updates, token, mapper: UpdateToVectorDiff::new(chunk_iterator) }
}
/// Take the new updates as [`VectorDiff`].
///
/// It returns an empty `Vec` if there is no new `VectorDiff` for the
/// moment.
pub fn take(&mut self) -> Vec<VectorDiff<Item>>
where
Item: Clone,
{
let mut updates = self.updates.write().unwrap();
self.mapper.map(updates.take_with_token(self.token))
}
}
/// Internal type that converts [`Update`] into [`VectorDiff`].
#[derive(Debug)]
struct UpdateToVectorDiff {
/// Pairs of all known chunks and their respective length. This is the only
/// required data for this algorithm.
chunks: VecDeque<(ChunkIdentifier, ChunkLength)>,
}
impl UpdateToVectorDiff {
/// Construct [`UpdateToVectorDiff`], based on an iterator of
/// [`Chunk`](super::Chunk)s, used to set up its own internal state.
///
/// See [`Self::map`] to learn more about the algorithm.
fn new<const CAP: usize, Item, Gap>(chunk_iterator: Iter<'_, CAP, Item, Gap>) -> Self {
let mut initial_chunk_lengths = VecDeque::new();
for chunk in chunk_iterator {
initial_chunk_lengths.push_front((
chunk.identifier(),
match chunk.content() {
ChunkContent::Gap(_) => 0,
ChunkContent::Items(items) => items.len(),
},
))
}
Self { chunks: initial_chunk_lengths }
}
/// Map several [`Update`] into [`VectorDiff`].
///
/// How does this type transform `Update` into `VectorDiff`? There is no
/// internal buffer of kind [`eyeball_im::ObservableVector<Item>`],
/// which could have been used to generate the `VectorDiff`s. They are
/// computed manually.
///
/// The only buffered data is pairs of [`ChunkIdentifier`] and
/// [`ChunkLength`]. The following rules must be respected (they are defined
/// in [`Self::new`]):
///
/// * A chunk of kind [`ChunkContent::Gap`] has a length of 0,
/// * A chunk of kind [`ChunkContent::Items`] has a length equals to its
/// number of items,
/// * The pairs must be ordered exactly like the chunks in [`LinkedChunk`],
/// i.e. the first pair must represent the first chunk, the last pair must
/// represent the last chunk.
///
/// The only thing this algorithm does is maintaining the pairs:
///
/// * [`Update::NewItemsChunk`] and [`Update::NewGapChunk`] are inserting a
/// new pair with a chunk length of 0 at the appropriate index,
/// * [`Update::RemoveChunk`] is removing a pair,
/// * [`Update::PushItems`] is increasing the length of the appropriate pair
/// by the number of new items, and is potentially emitting
/// [`VectorDiff`],
/// * [`Update::DetachLastItems`] is decreasing the length of the
/// appropriate pair by the number of items to be detached; no
/// [`VectorDiff`] is emitted,
/// * [`Update::StartReattachItems`] and [`Update::EndReattachItems`] are
/// respectively muting or unmuting the emission of [`VectorDiff`] by
/// [`Update::PushItems`].
///
/// The only `VectorDiff` that are emitted are [`VectorDiff::Insert`] or
/// [`VectorDiff::Append`] because a [`LinkedChunk`] is append-only.
///
/// `VectorDiff::Append` is an optimisation when numerous
/// `VectorDiff::Insert`s have to be emitted at the last position.
///
/// `VectorDiff::Insert` need an index. To compute this index, the algorithm
/// will iterate over all pairs to accumulate each chunk length until it
/// finds the appropriate pair (given by
/// [`Update::PushItems::at`]). This is _the offset_. To this offset, the
/// algorithm adds the position's index of the new items (still given by
/// [`Update::PushItems::at`]). This is _the index_. This logic works
/// for all cases as long as pairs are maintained according to the rules
/// hereinabove.
///
/// That's a pretty memory compact and computation efficient way to map a
/// `Vec<Update<Item, Gap>>` into a `Vec<VectorDiff<Item>>`. The larger the
/// `LinkedChunk` capacity is, the fewer pairs the algorithm will have
/// to handle, e.g. for 1'000 items and a `LinkedChunk` capacity of 128,
/// it's only 8 pairs, that is 256 bytes.
///
/// [`LinkedChunk`]: super::LinkedChunk
/// [`ChunkContent::Gap`]: super::ChunkContent::Gap
/// [`ChunkContent::Content`]: super::ChunkContent::Content
fn map<Item, Gap>(&mut self, updates: &[Update<Item, Gap>]) -> Vec<VectorDiff<Item>>
where
Item: Clone,
{
let mut diffs = Vec::with_capacity(updates.len());
// A flag specifying when updates are reattaching detached items.
//
// Why is it useful?
//
// Imagine a `LinkedChunk::<3, char, ()>` containing `['a', 'b', 'c'] ['d']`. If
// one wants to insert [`w`, x`, 'y', 'z'] at position
// `Position(ChunkIdentifier(0), 1)`, i.e. at the position of `b`, here is what
// happens:
//
// 1. `LinkedChunk` will split off `['a', 'b', 'c']` at index 1, the chunk
// becomes `['a']` and `b` and `c` are _detached_, thus we have:
//
// ['a'] ['d']
//
// 2. `LinkedChunk` will then insert `w`, `x`, `y` and `z` to get:
//
// ['a', 'w', 'x'] ['y', 'z'] ['d']
//
// 3. `LinkedChunk` will now reattach `b` and `c` after `z`, like so:
//
// ['a', 'w', 'x'] ['y', 'z', 'b'] ['c'] ['d']
//
// This detaching/reattaching approach makes it reliable and safe. Good. Now,
// what updates are we going to receive for each step?
//
// Step 1, detaching last items:
//
// ```
// Update::DetachLastItems { at: Position(ChunkIdentifier(0), 1) }
// ```
//
// Step 2, inserting new items:
//
// ```
// Update::PushItems {
// at: Position(ChunkIdentifier(0), 1),
// items: vec!['w', 'x'],
// }
// Update::NewItemsChunk {
// previous: Some(ChunkIdentifier(0)),
// new: ChunkIdentifier(2),
// next: Some(ChunkIdentifier(1)),
// }
// Update::PushItems {
// at: Position(ChunkIdentifier(2), 0),
// items: vec!['y', 'z'],
// }
// ```
//
// Step 3, reattaching detached items:
//
// ```
// Update::StartReattachItems
// Update::PushItems {
// at: Position(ChunkIdentifier(2), 2),
// items: vec!['b']
// }
// Update::NewItemsChunk {
// previous: Some(ChunkIdentifier(2)),
// new: ChunkIdentifier(3),
// next: Some(ChunkIdentifier(1)),
// }
// Update::PushItems {
// at: Position(ChunkIdentifier(3), 0),
// items: vec!['c'],
// }
// Update::EndReattachItems
// ```
//
// To ensure an optimised behaviour of this algorithm:
//
// * `Update::DetachLastItems` must not emit `VectorDiff::Remove`,
//
// * `Update::PushItems` must not emit `VectorDiff::Insert`s or
// `VectorDiff::Append`s if it happens after `StartReattachItems` and before
// `EndReattachItems`. However, `Self::chunks` must always be updated.
//
// From the `VectorDiff` “point of view”, this optimisation aims at avoiding
// removing items to push them again later.
let mut reattaching = false;
let mut detaching = false;
for update in updates {
match update {
Update::NewItemsChunk { previous, new, next }
| Update::NewGapChunk { previous, new, next, .. } => {
match (previous, next) {
// New chunk at the end.
(Some(previous), None) => {
debug_assert!(
matches!(self.chunks.back(), Some((p, _)) if p == previous),
"Inserting new chunk at the end: The previous chunk is invalid"
);
self.chunks.push_back((*new, 0));
}
// New chunk at the beginning.
(None, Some(next)) => {
debug_assert!(
matches!(self.chunks.front(), Some((n, _)) if n == next),
"Inserting new chunk at the end: The previous chunk is invalid"
);
self.chunks.push_front((*new, 0));
}
// New chunk is inserted between 2 chunks.
(Some(previous), Some(next)) => {
let next_chunk_index = self
.chunks
.iter()
.position(|(chunk_identifier, _)| chunk_identifier == next)
// SAFETY: Assuming `LinkedChunk` and `ObservableUpdates` are not
// buggy, and assuming `Self::chunks` is correctly initialized, it
// is not possible to insert a chunk between two chunks where one
// does not exist. If this predicate fails, it means `LinkedChunk`
// or `ObservableUpdates` contain a bug.
.expect("Inserting new chunk: The chunk is not found");
debug_assert!(
matches!(self.chunks.get(next_chunk_index - 1), Some((p, _)) if p == previous),
"Inserting new chunk: The previous chunk is invalid"
);
self.chunks.insert(next_chunk_index, (*new, 0));
}
(None, None) => {
unreachable!(
"Inserting new chunk with no previous nor next chunk identifiers \
is impossible"
);
}
}
}
Update::RemoveChunk(expected_chunk_identifier) => {
let chunk_index = self
.chunks
.iter()
.position(|(chunk_identifier, _)| {
chunk_identifier == expected_chunk_identifier
})
// SAFETY: Assuming `LinkedChunk` and `ObservableUpdates` are not buggy, and
// assuming `Self::chunks` is correctly initialized, it is not possible to
// remove a chunk that does not exist. If this predicate fails, it means
// `LinkedChunk` or `ObservableUpdates` contain a bug.
.expect("Removing a chunk: The chunk is not found");
// It's OK to ignore the result. The `chunk_index` exists because it's been
// found, and we don't care about its associated value.
let _ = self.chunks.remove(chunk_index);
}
Update::PushItems { at: position, items } => {
let number_of_chunks = self.chunks.len();
let (offset, (chunk_index, chunk_length)) = self.map_to_offset(position);
let is_pushing_back =
chunk_index + 1 == number_of_chunks && position.index() >= *chunk_length;
// Add the number of items to the chunk in `self.chunks`.
*chunk_length += items.len();
// See `reattaching` to learn more.
if reattaching {
continue;
}
// Optimisation: we can emit a `VectorDiff::Append` in this particular case.
if is_pushing_back && detaching.not() {
diffs.push(VectorDiff::Append { values: items.into() });
}
// No optimisation: let's emit `VectorDiff::Insert`.
else {
diffs.extend(items.iter().enumerate().map(|(nth, item)| {
VectorDiff::Insert { index: offset + nth, value: item.clone() }
}));
}
}
Update::RemoveItem { at: position } => {
let (offset, (_chunk_index, chunk_length)) = self.map_to_offset(position);
// Remove one item to the chunk in `self.chunks`.
*chunk_length -= 1;
// See `reattaching` to learn more.
if reattaching {
continue;
}
// Let's emit a `VectorDiff::Remove`.
diffs.push(VectorDiff::Remove { index: offset });
}
Update::DetachLastItems { at: position } => {
let expected_chunk_identifier = position.chunk_identifier();
let new_length = position.index();
let chunk_length = self
.chunks
.iter_mut()
.find_map(|(chunk_identifier, chunk_length)| {
(*chunk_identifier == expected_chunk_identifier).then_some(chunk_length)
})
// SAFETY: Assuming `LinkedChunk` and `ObservableUpdates` are not buggy, and
// assuming `Self::chunks` is correctly initialized, it is not possible to
// detach items from a chunk that does not exist. If this predicate fails,
// it means `LinkedChunk` or `ObservableUpdates` contain a bug.
.expect("Detach last items: The chunk is not found");
*chunk_length = new_length;
// Entering the _detaching_ mode.
detaching = true;
}
Update::StartReattachItems => {
// Entering the _reattaching_ mode.
reattaching = true;
}
Update::EndReattachItems => {
// Exiting the _reattaching_ mode.
reattaching = false;
// Exiting the _detaching_ mode.
detaching = false;
}
}
}
diffs
}
fn map_to_offset(&mut self, position: &Position) -> (usize, (usize, &mut usize)) {
let expected_chunk_identifier = position.chunk_identifier();
let (offset, (chunk_index, chunk_length)) = {
let control_flow = self.chunks.iter_mut().enumerate().try_fold(
position.index(),
|offset, (chunk_index, (chunk_identifier, chunk_length))| {
if chunk_identifier == &expected_chunk_identifier {
ControlFlow::Break((offset, (chunk_index, chunk_length)))
} else {
ControlFlow::Continue(offset + *chunk_length)
}
},
);
match control_flow {
// Chunk has been found, and all values have been calculated as
// expected.
ControlFlow::Break(values) => values,
// Chunk has not been found.
ControlFlow::Continue(..) => {
// SAFETY: Assuming `LinkedChunk` and `ObservableUpdates` are not buggy, and
// assuming `Self::chunks` is correctly initialized, it is not possible to work
// on a chunk that does not exist. If this predicate fails, it means
// `LinkedChunk` or `ObservableUpdates` contain a bug.
panic!("The chunk is not found");
}
}
};
(offset, (chunk_index, chunk_length))
}
}
#[cfg(test)]
mod tests {
use std::fmt::Debug;
use imbl::{vector, Vector};
use super::{
super::{EmptyChunk, LinkedChunk},
VectorDiff,
};
fn apply_and_assert_eq<Item>(
accumulator: &mut Vector<Item>,
diffs: Vec<VectorDiff<Item>>,
expected_diffs: &[VectorDiff<Item>],
) where
Item: PartialEq + Clone + Debug,
{
assert_eq!(diffs, expected_diffs);
for diff in diffs {
match diff {
VectorDiff::Insert { index, value } => accumulator.insert(index, value),
VectorDiff::Append { values } => accumulator.append(values),
VectorDiff::Remove { index } => {
accumulator.remove(index);
}
diff => unimplemented!("{diff:?}"),
}
}
}
#[test]
fn test_as_vector() {
let mut linked_chunk = LinkedChunk::<3, char, ()>::new_with_update_history();
let mut as_vector = linked_chunk.as_vector().unwrap();
let mut accumulator = Vector::new();
assert!(as_vector.take().is_empty());
linked_chunk.push_items_back(['a', 'b', 'c', 'd']);
#[rustfmt::skip]
assert_items_eq!(linked_chunk, ['a', 'b', 'c'] ['d']);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4
// +---+---+---+---+
// | a | b | c | d |
// +---+---+---+---+
// ^^^^^^^^^^^^^^^^
// |
// new
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[
VectorDiff::Append { values: vector!['a', 'b', 'c'] },
VectorDiff::Append { values: vector!['d'] },
],
);
linked_chunk
.insert_items_at(
['w', 'x', 'y', 'z'],
linked_chunk.item_position(|item| *item == 'b').unwrap(),
)
.unwrap();
assert_items_eq!(linked_chunk, ['a', 'w', 'x'] ['y', 'z', 'b'] ['c'] ['d']);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8
// +---+---+---+---+---+---+---+---+
// | a | w | x | y | z | b | c | d |
// +---+---+---+---+---+---+---+---+
// ^^^^^^^^^^^^^^^^
// |
// new
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[
VectorDiff::Insert { index: 1, value: 'w' },
VectorDiff::Insert { index: 2, value: 'x' },
VectorDiff::Insert { index: 3, value: 'y' },
VectorDiff::Insert { index: 4, value: 'z' },
],
);
linked_chunk.push_gap_back(());
linked_chunk.push_items_back(['e', 'f', 'g', 'h']);
assert_items_eq!(
linked_chunk,
['a', 'w', 'x'] ['y', 'z', 'b'] ['c'] ['d'] [-] ['e', 'f', 'g'] ['h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12
// +---+---+---+---+---+---+---+---+---+---+---+---+
// | a | w | x | y | z | b | c | d | e | f | g | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+
// ^^^^^^^^^^^^^^^^
// |
// new
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[
VectorDiff::Append { values: vector!['e', 'f', 'g'] },
VectorDiff::Append { values: vector!['h'] },
],
);
linked_chunk
.replace_gap_at(
['i', 'j', 'k', 'l'],
linked_chunk.chunk_identifier(|chunk| chunk.is_gap()).unwrap(),
)
.unwrap();
assert_items_eq!(
linked_chunk,
['a', 'w', 'x'] ['y', 'z', 'b'] ['c'] ['d'] ['i', 'j', 'k'] ['l'] ['e', 'f', 'g'] ['h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | a | w | x | y | z | b | c | d | i | j | k | l | e | f | g | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// ^^^^^^^^^^^^^^^^
// |
// new
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[
VectorDiff::Insert { index: 8, value: 'i' },
VectorDiff::Insert { index: 9, value: 'j' },
VectorDiff::Insert { index: 10, value: 'k' },
VectorDiff::Insert { index: 11, value: 'l' },
],
);
linked_chunk
.insert_items_at(['m'], linked_chunk.item_position(|item| *item == 'a').unwrap())
.unwrap();
assert_items_eq!(
linked_chunk,
['m', 'a', 'w'] ['x'] ['y', 'z', 'b'] ['c'] ['d'] ['i', 'j', 'k'] ['l'] ['e', 'f', 'g'] ['h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | m | a | w | x | y | z | b | c | d | i | j | k | l | e | f | g | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// ^^^^
// |
// new
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[VectorDiff::Insert { index: 0, value: 'm' }],
);
let removed_item = linked_chunk
.remove_item_at(
linked_chunk.item_position(|item| *item == 'c').unwrap(),
EmptyChunk::Remove,
)
.unwrap();
assert_eq!(removed_item, 'c');
assert_items_eq!(
linked_chunk,
['m', 'a', 'w'] ['x'] ['y', 'z', 'b'] ['d'] ['i', 'j', 'k'] ['l'] ['e', 'f', 'g'] ['h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | m | a | w | x | y | z | b | d | i | j | k | l | e | f | g | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// ^
// |
// `c` has been removed
apply_and_assert_eq(&mut accumulator, as_vector.take(), &[VectorDiff::Remove { index: 7 }]);
let removed_item = linked_chunk
.remove_item_at(
linked_chunk.item_position(|item| *item == 'z').unwrap(),
EmptyChunk::Remove,
)
.unwrap();
assert_eq!(removed_item, 'z');
assert_items_eq!(
linked_chunk,
['m', 'a', 'w'] ['x'] ['y', 'b'] ['d'] ['i', 'j', 'k'] ['l'] ['e', 'f', 'g'] ['h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | m | a | w | x | y | b | d | i | j | k | l | e | f | g | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// ^
// |
// `z` has been removed
apply_and_assert_eq(&mut accumulator, as_vector.take(), &[VectorDiff::Remove { index: 5 }]);
linked_chunk
.insert_items_at(['z'], linked_chunk.item_position(|item| *item == 'h').unwrap())
.unwrap();
assert_items_eq!(
linked_chunk,
['m', 'a', 'w'] ['x'] ['y', 'b'] ['d'] ['i', 'j', 'k'] ['l'] ['e', 'f', 'g'] ['z', 'h']
);
// From an `ObservableVector` point of view, it would look like:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | m | a | w | x | y | b | d | i | j | k | l | e | f | g | z | h |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// ^^^^
// |
// new!
apply_and_assert_eq(
&mut accumulator,
as_vector.take(),
&[VectorDiff::Insert { index: 14, value: 'z' }],
);
drop(linked_chunk);
assert!(as_vector.take().is_empty());
// Finally, ensure the “reconstitued” vector is the one expected.
assert_eq!(
accumulator,
vector!['m', 'a', 'w', 'x', 'y', 'b', 'd', 'i', 'j', 'k', 'l', 'e', 'f', 'g', 'z', 'h']
);
}
#[test]
fn updates_are_drained_when_constructing_as_vector() {
let mut linked_chunk = LinkedChunk::<10, char, ()>::new_with_update_history();
linked_chunk.push_items_back(['a']);
let mut as_vector = linked_chunk.as_vector().unwrap();
let diffs = as_vector.take();
// `diffs` are empty because `AsVector` is built _after_ `LinkedChunk`
// has been updated.
assert!(diffs.is_empty());
linked_chunk.push_items_back(['b']);
let diffs = as_vector.take();
// `diffs` is not empty because new updates are coming.
assert_eq!(diffs.len(), 1);
}
#[cfg(not(target_arch = "wasm32"))]
mod proptests {
use proptest::prelude::*;
use super::*;
#[derive(Debug, Clone)]
enum AsVectorOperation {
PushItems { items: Vec<char> },
PushGap,
ReplaceLastGap { items: Vec<char> },
RemoveItem { item: char },
}
fn as_vector_operation_strategy() -> impl Strategy<Value = AsVectorOperation> {
prop_oneof![
3 => prop::collection::vec(prop::char::ranges(vec!['a'..='z', 'A'..='Z'].into()), 0..=25)
.prop_map(|items| AsVectorOperation::PushItems { items }),
2 => Just(AsVectorOperation::PushGap),
1 => prop::collection::vec(prop::char::ranges(vec!['a'..='z', 'A'..='Z'].into()), 0..=25)
.prop_map(|items| AsVectorOperation::ReplaceLastGap { items }),
1 => prop::char::ranges(vec!['a'..='z', 'A'..='Z'].into())
.prop_map(|item| AsVectorOperation::RemoveItem { item }),
]
}
proptest! {
#[test]
fn as_vector_is_correct(
operations in prop::collection::vec(as_vector_operation_strategy(), 50..=200)
) {
let mut linked_chunk = LinkedChunk::<10, char, ()>::new_with_update_history();
let mut as_vector = linked_chunk.as_vector().unwrap();
for operation in operations {
match operation {
AsVectorOperation::PushItems { items } => {
linked_chunk.push_items_back(items);
}
AsVectorOperation::PushGap => {
linked_chunk.push_gap_back(());
}
AsVectorOperation::ReplaceLastGap { items } => {
let Some(gap_identifier) = linked_chunk
.rchunks()
.find_map(|chunk| chunk.is_gap().then_some(chunk.identifier()))
else {
continue;
};
linked_chunk.replace_gap_at(items, gap_identifier).expect("Failed to replace a gap");
}
AsVectorOperation::RemoveItem { item: expected_item } => {
let Some(position) = linked_chunk
.items().find_map(|(position, item)| (*item == expected_item).then_some(position))
else {
continue;
};
linked_chunk.remove_item_at(position, EmptyChunk::Remove).expect("Failed to remove an item");
}
}
}
let mut vector_from_diffs = Vec::new();
// Read all updates as `VectorDiff` and rebuild a `Vec<char>`.
for diff in as_vector.take() {
match diff {
VectorDiff::Insert { index, value } => vector_from_diffs.insert(index, value),
VectorDiff::Append { values } => {
let mut values = values.iter().copied().collect();
vector_from_diffs.append(&mut values);
}
VectorDiff::Remove { index } => {
vector_from_diffs.remove(index);
}
_ => unreachable!(),
}
}
// Iterate over all chunks and collect items as `Vec<char>`.
let vector_from_chunks = linked_chunk.items().map(|(_, item)| *item).collect::<Vec<_>>();
// Compare both `Vec`s.
assert_eq!(vector_from_diffs, vector_from_chunks);
}
}
}
}