matrix_sdk_crypto/identities/user.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{
collections::HashMap,
ops::{Deref, DerefMut},
sync::{
atomic::{AtomicBool, Ordering},
Arc, RwLock,
},
};
use as_variant::as_variant;
use ruma::{
api::client::keys::upload_signatures::v3::Request as SignatureUploadRequest,
events::{
key::verification::VerificationMethod, room::message::KeyVerificationRequestEventContent,
},
DeviceId, EventId, OwnedDeviceId, OwnedUserId, RoomId, UserId,
};
use serde::{Deserialize, Deserializer, Serialize};
use serde_json::Value;
use tracing::{error, info};
use crate::{
error::SignatureError,
store::{Changes, IdentityChanges, Store},
types::{
requests::OutgoingVerificationRequest, MasterPubkey, SelfSigningPubkey, UserSigningPubkey,
},
verification::VerificationMachine,
CryptoStoreError, DeviceData, VerificationRequest,
};
/// Enum over the different user identity types we can have.
#[derive(Debug, Clone)]
pub enum UserIdentity {
/// Our own user identity.
Own(OwnUserIdentity),
/// An identity belonging to another user.
Other(OtherUserIdentity),
}
impl UserIdentity {
/// Destructure the enum into an [`OwnUserIdentity`] if it's of the correct
/// type.
pub fn own(self) -> Option<OwnUserIdentity> {
as_variant!(self, Self::Own)
}
/// Destructure the enum into an [`OtherUserIdentity`] if it's of the
/// correct type.
pub fn other(self) -> Option<OtherUserIdentity> {
as_variant!(self, Self::Other)
}
/// Get the ID of the user this identity belongs to.
pub fn user_id(&self) -> &UserId {
match self {
UserIdentity::Own(u) => u.user_id(),
UserIdentity::Other(u) => u.user_id(),
}
}
pub(crate) fn new(
store: Store,
identity: UserIdentityData,
verification_machine: VerificationMachine,
own_identity: Option<OwnUserIdentityData>,
) -> Self {
match identity {
UserIdentityData::Own(i) => {
Self::Own(OwnUserIdentity { inner: i, verification_machine, store })
}
UserIdentityData::Other(i) => {
Self::Other(OtherUserIdentity { inner: i, own_identity, verification_machine })
}
}
}
/// Check if this user identity is verified.
///
/// For our own identity, this means either that we have checked the public
/// keys in the identity against the private keys; or that the identity
/// has been manually marked as verified via
/// [`OwnUserIdentity::verify`].
///
/// For another user's identity, it means that we have verified our own
/// identity as above, *and* that the other user's identity has been signed
/// by our own user-signing key.
pub fn is_verified(&self) -> bool {
match self {
UserIdentity::Own(u) => u.is_verified(),
UserIdentity::Other(u) => u.is_verified(),
}
}
/// True if we verified this identity at some point in the past.
///
/// To reset this latch back to `false`, one must call
/// [`UserIdentity::withdraw_verification()`].
pub fn was_previously_verified(&self) -> bool {
match self {
UserIdentity::Own(u) => u.was_previously_verified(),
UserIdentity::Other(u) => u.was_previously_verified(),
}
}
/// Reset the flag that records that the identity has been verified, thus
/// clearing [`UserIdentity::was_previously_verified`] and
/// [`UserIdentity::has_verification_violation`].
pub async fn withdraw_verification(&self) -> Result<(), CryptoStoreError> {
match self {
UserIdentity::Own(u) => u.withdraw_verification().await,
UserIdentity::Other(u) => u.withdraw_verification().await,
}
}
/// Remember this identity, ensuring it does not result in a pin violation.
///
/// When we first see a user, we assume their cryptographic identity has not
/// been tampered with by the homeserver or another entity with
/// man-in-the-middle capabilities. We remember this identity and call this
/// action "pinning".
///
/// If the identity presented for the user changes later on, the newly
/// presented identity is considered to be in "pin violation". This
/// method explicitly accepts the new identity, allowing it to replace
/// the previously pinned one and bringing it out of pin violation.
///
/// UIs should display a warning to the user when encountering an identity
/// which is not verified and is in pin violation. See
/// [`OtherUserIdentity::identity_needs_user_approval`].
pub async fn pin(&self) -> Result<(), CryptoStoreError> {
match self {
UserIdentity::Own(_) => {
// Nothing to be done for our own identity: we already
// consider it trusted in this sense.
Ok(())
}
UserIdentity::Other(u) => u.pin_current_master_key().await,
}
}
/// Was this identity previously verified, and is no longer?
pub fn has_verification_violation(&self) -> bool {
match self {
UserIdentity::Own(u) => u.has_verification_violation(),
UserIdentity::Other(u) => u.has_verification_violation(),
}
}
}
impl From<OwnUserIdentity> for UserIdentity {
fn from(i: OwnUserIdentity) -> Self {
Self::Own(i)
}
}
impl From<OtherUserIdentity> for UserIdentity {
fn from(i: OtherUserIdentity) -> Self {
Self::Other(i)
}
}
/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that is our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
///
/// This struct wraps the [`OwnUserIdentityData`] type and allows a verification
/// to be requested to verify our own device with the user identity.
#[derive(Debug, Clone)]
pub struct OwnUserIdentity {
pub(crate) inner: OwnUserIdentityData,
pub(crate) verification_machine: VerificationMachine,
store: Store,
}
impl Deref for OwnUserIdentity {
type Target = OwnUserIdentityData;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl DerefMut for OwnUserIdentity {
fn deref_mut(&mut self) -> &mut <Self as Deref>::Target {
&mut self.inner
}
}
impl OwnUserIdentity {
/// Mark our user identity as verified.
///
/// This will mark the identity locally as verified and sign it with our own
/// device.
///
/// Returns a signature upload request that needs to be sent out.
pub async fn verify(&self) -> Result<SignatureUploadRequest, SignatureError> {
self.mark_as_verified();
let changes = Changes {
identities: IdentityChanges {
changed: vec![self.inner.clone().into()],
new: vec![],
unchanged: vec![],
},
..Default::default()
};
if let Err(e) = self.verification_machine.store.save_changes(changes).await {
error!(error = ?e, "Couldn't store our own user identity after marking it as verified");
}
let cache = self.store.cache().await?;
let account = cache.account().await?;
account.sign_master_key(&self.master_key)
}
/// Send a verification request to our other devices.
pub async fn request_verification(
&self,
) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
self.request_verification_helper(None).await
}
/// Send a verification request to our other devices while specifying our
/// supported methods.
///
/// # Arguments
///
/// * `methods` - The verification methods that we're supporting.
pub async fn request_verification_with_methods(
&self,
methods: Vec<VerificationMethod>,
) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
self.request_verification_helper(Some(methods)).await
}
/// Does our user identity trust our own device, i.e. have we signed our
/// own device keys with our self-signing key.
pub async fn trusts_our_own_device(&self) -> Result<bool, CryptoStoreError> {
Ok(if let Some(signatures) = self.verification_machine.store.device_signatures().await? {
let mut device_keys = self.store.cache().await?.account().await?.device_keys();
device_keys.signatures = signatures;
self.inner.self_signing_key().verify_device_keys(&device_keys).is_ok()
} else {
false
})
}
async fn request_verification_helper(
&self,
methods: Option<Vec<VerificationMethod>>,
) -> Result<(VerificationRequest, OutgoingVerificationRequest), CryptoStoreError> {
let all_devices = self.verification_machine.store.get_user_devices(self.user_id()).await?;
let devices = self
.inner
.filter_devices_to_request(all_devices, self.verification_machine.own_device_id());
Ok(self.verification_machine.request_to_device_verification(
self.user_id(),
devices,
methods,
))
}
/// Remove the requirement for this identity to be verified.
pub async fn withdraw_verification(&self) -> Result<(), CryptoStoreError> {
self.inner.withdraw_verification();
let to_save = UserIdentityData::Own(self.inner.clone());
let changes = Changes {
identities: IdentityChanges { changed: vec![to_save], ..Default::default() },
..Default::default()
};
self.verification_machine.store.inner().save_changes(changes).await?;
Ok(())
}
}
/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that isn't our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
///
/// This struct wraps a read-only version of the struct and allows verifications
/// to be requested to verify our own device with the user identity.
#[derive(Debug, Clone)]
pub struct OtherUserIdentity {
pub(crate) inner: OtherUserIdentityData,
pub(crate) own_identity: Option<OwnUserIdentityData>,
pub(crate) verification_machine: VerificationMachine,
}
impl Deref for OtherUserIdentity {
type Target = OtherUserIdentityData;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl DerefMut for OtherUserIdentity {
fn deref_mut(&mut self) -> &mut <Self as Deref>::Target {
&mut self.inner
}
}
impl OtherUserIdentity {
/// Is this user identity verified.
pub fn is_verified(&self) -> bool {
self.own_identity
.as_ref()
.is_some_and(|own_identity| own_identity.is_identity_verified(&self.inner))
}
/// Manually verify this user.
///
/// This method will attempt to sign the user identity using our private
/// cross signing key.
///
/// This method fails if we don't have the private part of our user-signing
/// key.
///
/// Returns a request that needs to be sent out for the user to be marked
/// as verified.
pub async fn verify(&self) -> Result<SignatureUploadRequest, SignatureError> {
if self.user_id() != self.verification_machine.own_user_id() {
Ok(self
.verification_machine
.store
.private_identity
.lock()
.await
.sign_user(&self.inner)
.await?)
} else {
Err(SignatureError::UserIdMismatch)
}
}
/// Create a [`VerificationRequest`] object after the verification request
/// content has been sent out.
pub fn request_verification(
&self,
room_id: &RoomId,
request_event_id: &EventId,
methods: Option<Vec<VerificationMethod>>,
) -> VerificationRequest {
self.verification_machine.request_verification(
&self.inner,
room_id,
request_event_id,
methods,
)
}
/// Send a verification request to the given user.
///
/// The returned content needs to be sent out into a DM room with the given
/// user.
///
/// After the content has been sent out a [`VerificationRequest`] can be
/// started with the [`OtherUserIdentity::request_verification()`] method.
pub fn verification_request_content(
&self,
methods: Option<Vec<VerificationMethod>>,
) -> KeyVerificationRequestEventContent {
VerificationRequest::request(
self.verification_machine.own_user_id(),
self.verification_machine.own_device_id(),
self.user_id(),
methods,
)
}
/// Pin the current identity (public part of the master signing key).
pub async fn pin_current_master_key(&self) -> Result<(), CryptoStoreError> {
info!(master_key = ?self.master_key.get_first_key(), "Pinning current identity for user '{}'", self.user_id());
self.inner.pin();
let to_save = UserIdentityData::Other(self.inner.clone());
let changes = Changes {
identities: IdentityChanges { changed: vec![to_save], ..Default::default() },
..Default::default()
};
self.verification_machine.store.inner().save_changes(changes).await?;
Ok(())
}
/// Has the identity changed in a way that requires approval from the user?
///
/// A user identity needs approval if it changed after the crypto machine
/// has already observed ("pinned") a different identity for that user,
/// unless it is an explicitly verified identity (using for example
/// interactive verification).
///
/// This situation can be resolved by:
///
/// - Verifying the new identity with
/// [`OtherUserIdentity::request_verification`], or:
/// - Updating the pin to the new identity with
/// [`OtherUserIdentity::pin_current_master_key`].
pub fn identity_needs_user_approval(&self) -> bool {
// First check if the current identity is verified.
if self.is_verified() {
return false;
}
// If not we can check the pinned identity. Verification always have
// higher priority than pinning.
self.inner.has_pin_violation()
}
/// Remove the requirement for this identity to be verified.
pub async fn withdraw_verification(&self) -> Result<(), CryptoStoreError> {
info!(master_key = ?self.master_key.get_first_key(), "Withdrawing verification status and pinning current identity for user '{}'", self.user_id());
self.inner.withdraw_verification();
let to_save = UserIdentityData::Other(self.inner.clone());
let changes = Changes {
identities: IdentityChanges { changed: vec![to_save], ..Default::default() },
..Default::default()
};
self.verification_machine.store.inner().save_changes(changes).await?;
Ok(())
}
/// Test helper that marks that an identity has been previously verified and
/// persist the change in the store.
#[cfg(test)]
pub async fn mark_as_previously_verified(&self) -> Result<(), CryptoStoreError> {
self.inner.mark_as_previously_verified();
let to_save = UserIdentityData::Other(self.inner.clone());
let changes = Changes {
identities: IdentityChanges { changed: vec![to_save], ..Default::default() },
..Default::default()
};
self.verification_machine.store.inner().save_changes(changes).await?;
Ok(())
}
/// Was this identity verified since initial observation and is not anymore?
///
/// Such a violation should be reported to the local user by the
/// application, and resolved by
///
/// - Verifying the new identity with
/// [`OtherUserIdentity::request_verification`]
/// - Or by withdrawing the verification requirement
/// [`OtherUserIdentity::withdraw_verification`].
pub fn has_verification_violation(&self) -> bool {
if !self.inner.was_previously_verified() {
// If that identity has never been verified it cannot be in violation.
return false;
};
!self.is_verified()
}
}
/// Enum over the different user identity types we can have.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum UserIdentityData {
/// Our own user identity.
Own(OwnUserIdentityData),
/// The identity of another user.
Other(OtherUserIdentityData),
}
impl From<OwnUserIdentityData> for UserIdentityData {
fn from(identity: OwnUserIdentityData) -> Self {
UserIdentityData::Own(identity)
}
}
impl From<OtherUserIdentityData> for UserIdentityData {
fn from(identity: OtherUserIdentityData) -> Self {
UserIdentityData::Other(identity)
}
}
impl UserIdentityData {
/// The unique user id of this identity.
pub fn user_id(&self) -> &UserId {
match self {
UserIdentityData::Own(i) => i.user_id(),
UserIdentityData::Other(i) => i.user_id(),
}
}
/// Get the master key of the identity.
pub fn master_key(&self) -> &MasterPubkey {
match self {
UserIdentityData::Own(i) => i.master_key(),
UserIdentityData::Other(i) => i.master_key(),
}
}
/// Get the [`SelfSigningPubkey`] key of the identity.
pub fn self_signing_key(&self) -> &SelfSigningPubkey {
match self {
UserIdentityData::Own(i) => &i.self_signing_key,
UserIdentityData::Other(i) => &i.self_signing_key,
}
}
/// Get the user-signing key of the identity, this is only present for our
/// own user identity..
pub fn user_signing_key(&self) -> Option<&UserSigningPubkey> {
match self {
UserIdentityData::Own(i) => Some(&i.user_signing_key),
UserIdentityData::Other(_) => None,
}
}
/// True if we verified our own identity at some point in the past.
///
/// To reset this latch back to `false`, one must call
/// [`UserIdentity::withdraw_verification()`].
pub fn was_previously_verified(&self) -> bool {
match self {
UserIdentityData::Own(i) => i.was_previously_verified(),
UserIdentityData::Other(i) => i.was_previously_verified(),
}
}
/// Convert the enum into a reference [`OwnUserIdentityData`] if it's of
/// the correct type.
pub fn own(&self) -> Option<&OwnUserIdentityData> {
as_variant!(self, Self::Own)
}
/// Convert the enum into an [`OwnUserIdentityData`] if it's of the correct
/// type.
pub(crate) fn into_own(self) -> Option<OwnUserIdentityData> {
as_variant!(self, Self::Own)
}
/// Convert the enum into a reference to [`OtherUserIdentityData`] if
/// it's of the correct type.
pub fn other(&self) -> Option<&OtherUserIdentityData> {
as_variant!(self, Self::Other)
}
}
/// Struct representing a cross signing identity of a user.
///
/// This is the user identity of a user that isn't our own. Other users will
/// only contain a master key and a self signing key, meaning that only device
/// signatures can be checked with this identity.
///
/// This struct also contains the currently pinned user identity (public master
/// key) for that user and a local flag that serves as a latch to remember if an
/// identity was verified once.
///
/// The first time a cryptographic user identity is seen for a given user, it
/// will be associated with that user ("pinned"). Future interactions
/// will expect this identity to stay the same, to avoid MITM attacks from the
/// homeserver.
///
/// The user can explicitly pin the new identity to allow for legitimate
/// identity changes (for example, in case of key material or device loss).
///
/// As soon as the cryptographic identity is verified (i.e. signed by our own
/// trusted identity), a flag is set to remember it (`previously_verified`).
/// Future interactions will expect this user to stay verified, in case of
/// violation the user should be notified with a blocking warning when sending a
/// message.
#[derive(Debug, Clone, Deserialize, Serialize)]
#[serde(try_from = "OtherUserIdentityDataSerializer", into = "OtherUserIdentityDataSerializer")]
pub struct OtherUserIdentityData {
user_id: OwnedUserId,
pub(crate) master_key: Arc<MasterPubkey>,
self_signing_key: Arc<SelfSigningPubkey>,
pinned_master_key: Arc<RwLock<MasterPubkey>>,
/// This tracks whether this olm machine has already seen this user as
/// verified. To use it in the future to detect cases where the user has
/// become unverified for any reason. This can be reset using
/// [`OtherUserIdentityData::withdraw_verification()`].
previously_verified: Arc<AtomicBool>,
}
/// Intermediate struct to help serialize OtherUserIdentityData and support
/// versioning and migration.
///
/// Version v1 is adding support for identity pinning (`pinned_master_key`), as
/// part of migration we just pin the currently known public master key.
#[derive(Deserialize, Serialize)]
struct OtherUserIdentityDataSerializer {
version: Option<String>,
#[serde(flatten)]
other: Value,
}
#[derive(Debug, Deserialize, Serialize)]
struct OtherUserIdentityDataSerializerV0 {
user_id: OwnedUserId,
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
}
#[derive(Debug, Deserialize, Serialize)]
struct OtherUserIdentityDataSerializerV1 {
user_id: OwnedUserId,
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
pinned_master_key: MasterPubkey,
}
#[derive(Debug, Deserialize, Serialize)]
struct OtherUserIdentityDataSerializerV2 {
user_id: OwnedUserId,
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
pinned_master_key: MasterPubkey,
previously_verified: bool,
}
impl TryFrom<OtherUserIdentityDataSerializer> for OtherUserIdentityData {
type Error = serde_json::Error;
fn try_from(
value: OtherUserIdentityDataSerializer,
) -> Result<OtherUserIdentityData, Self::Error> {
match value.version {
None => {
// Old format, migrate the pinned identity
let v0: OtherUserIdentityDataSerializerV0 = serde_json::from_value(value.other)?;
Ok(OtherUserIdentityData {
user_id: v0.user_id,
master_key: Arc::new(v0.master_key.clone()),
self_signing_key: Arc::new(v0.self_signing_key),
// We migrate by pinning the current master key
pinned_master_key: Arc::new(RwLock::new(v0.master_key)),
previously_verified: Arc::new(false.into()),
})
}
Some(v) if v == "1" => {
let v1: OtherUserIdentityDataSerializerV1 = serde_json::from_value(value.other)?;
Ok(OtherUserIdentityData {
user_id: v1.user_id,
master_key: Arc::new(v1.master_key.clone()),
self_signing_key: Arc::new(v1.self_signing_key),
pinned_master_key: Arc::new(RwLock::new(v1.pinned_master_key)),
// Put it to false. There will be a migration to mark all users as dirty, so we
// will receive an update for the identity that will correctly set up the value.
previously_verified: Arc::new(false.into()),
})
}
Some(v) if v == "2" => {
let v2: OtherUserIdentityDataSerializerV2 = serde_json::from_value(value.other)?;
Ok(OtherUserIdentityData {
user_id: v2.user_id,
master_key: Arc::new(v2.master_key.clone()),
self_signing_key: Arc::new(v2.self_signing_key),
pinned_master_key: Arc::new(RwLock::new(v2.pinned_master_key)),
previously_verified: Arc::new(v2.previously_verified.into()),
})
}
_ => Err(serde::de::Error::custom(format!("Unsupported Version {:?}", value.version))),
}
}
}
impl From<OtherUserIdentityData> for OtherUserIdentityDataSerializer {
fn from(value: OtherUserIdentityData) -> Self {
let v2 = OtherUserIdentityDataSerializerV2 {
user_id: value.user_id.clone(),
master_key: value.master_key().to_owned(),
self_signing_key: value.self_signing_key().to_owned(),
pinned_master_key: value.pinned_master_key.read().unwrap().clone(),
previously_verified: value.previously_verified.load(Ordering::SeqCst),
};
OtherUserIdentityDataSerializer {
version: Some("2".to_owned()),
other: serde_json::to_value(v2).unwrap(),
}
}
}
impl PartialEq for OtherUserIdentityData {
/// The `PartialEq` implementation compares several attributes, including
/// the user ID, key material, usage, and, notably, the signatures of
/// the master key.
///
/// This approach contrasts with the `PartialEq` implementation of the
/// [`MasterPubkey`], and [`SelfSigningPubkey`] types,
/// where the signatures are disregarded. This distinction arises from our
/// treatment of identity as the combined representation of cross-signing
/// keys and the associated verification state.
///
/// The verification state of an identity depends on the signatures of the
/// master key, requiring their inclusion in our `PartialEq` implementation.
fn eq(&self, other: &Self) -> bool {
self.user_id == other.user_id
&& self.master_key == other.master_key
&& self.self_signing_key == other.self_signing_key
&& self.master_key.signatures() == other.master_key.signatures()
}
}
impl OtherUserIdentityData {
/// Create a new user identity with the given master and self signing key.
///
/// # Arguments
///
/// * `master_key` - The master key of the user identity.
///
/// * `self signing key` - The self signing key of user identity.
///
/// Returns a `SignatureError` if the self signing key fails to be correctly
/// verified by the given master key.
pub(crate) fn new(
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
) -> Result<Self, SignatureError> {
master_key.verify_subkey(&self_signing_key)?;
Ok(Self {
user_id: master_key.user_id().into(),
master_key: master_key.clone().into(),
self_signing_key: self_signing_key.into(),
pinned_master_key: RwLock::new(master_key).into(),
previously_verified: Arc::new(false.into()),
})
}
#[cfg(test)]
pub(crate) async fn from_private(identity: &crate::olm::PrivateCrossSigningIdentity) -> Self {
let master_key = identity.master_key.lock().await.as_ref().unwrap().public_key().clone();
let self_signing_key =
identity.self_signing_key.lock().await.as_ref().unwrap().public_key().clone().into();
Self {
user_id: identity.user_id().into(),
master_key: Arc::new(master_key.clone()),
self_signing_key,
pinned_master_key: Arc::new(RwLock::new(master_key.clone())),
previously_verified: Arc::new(false.into()),
}
}
/// Get the user id of this identity.
pub fn user_id(&self) -> &UserId {
&self.user_id
}
/// Get the public master key of the identity.
pub fn master_key(&self) -> &MasterPubkey {
&self.master_key
}
/// Get the public self-signing key of the identity.
pub fn self_signing_key(&self) -> &SelfSigningPubkey {
&self.self_signing_key
}
/// Remember this identity, ensuring it does not result in a pin violation.
///
/// When we first see a user, we assume their cryptographic identity has not
/// been tampered with by the homeserver or another entity with
/// man-in-the-middle capabilities. We remember this identity and call this
/// action "pinning".
///
/// If the identity presented for the user changes later on, the newly
/// presented identity is considered to be in "pin violation". This
/// method explicitly accepts the new identity, allowing it to replace
/// the previously pinned one and bringing it out of pin violation.
///
/// UIs should display a warning to the user when encountering an identity
/// which is not verified and is in pin violation. See
/// [`OtherUserIdentity::identity_needs_user_approval`].
pub(crate) fn pin(&self) {
let mut m = self.pinned_master_key.write().unwrap();
*m = self.master_key.as_ref().clone()
}
/// Remember that this identity used to be verified at some point.
pub(crate) fn mark_as_previously_verified(&self) {
self.previously_verified.store(true, Ordering::SeqCst)
}
/// True if we verified this identity (with any own identity, at any
/// point).
///
/// To set this latch back to false, call
/// [`OtherUserIdentityData::withdraw_verification()`].
pub fn was_previously_verified(&self) -> bool {
self.previously_verified.load(Ordering::SeqCst)
}
/// Remove the requirement for this identity to be verified.
///
/// If an identity was previously verified and is not anymore it will be
/// reported to the user. In order to remove this notice users have to
/// verify again or to withdraw the verification requirement.
pub fn withdraw_verification(&self) {
// We also pin when we withdraw, since withdrawing implicitly acknowledges
// the identity change
self.pin();
self.previously_verified.store(false, Ordering::SeqCst)
}
/// Returns true if the identity has changed since we last pinned it.
///
/// Key pinning acts as a trust on first use mechanism: the first time an
/// identity is known for a user it will be pinned.
///
/// For future interaction with a user, the identity is expected to be the
/// one that was pinned. In case of identity change the UI client should
/// receive reports of pinning violation and decide to act accordingly:
/// accept and pin the new identity, perform a verification, or
/// stop communications.
pub(crate) fn has_pin_violation(&self) -> bool {
let pinned_master_key = self.pinned_master_key.read().unwrap();
pinned_master_key.get_first_key() != self.master_key().get_first_key()
}
/// Update the identity with a new master key and self signing key.
///
/// # Arguments
///
/// * `master_key` - The new master key of the user identity.
///
/// * `self_signing_key` - The new self signing key of user identity.
///
/// * `maybe_verified_own_user_signing_key` - Our own user_signing_key if it
/// is verified to check the identity trust status after update.
///
/// Returns a `SignatureError` if we failed to update the identity.
/// Otherwise, returns `true` if there was a change to the identity and
/// `false` if the identity is unchanged.
pub(crate) fn update(
&mut self,
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
maybe_verified_own_user_signing_key: Option<&UserSigningPubkey>,
) -> Result<bool, SignatureError> {
master_key.verify_subkey(&self_signing_key)?;
// We update the identity with the new master and self signing key, but we keep
// the previous pinned master key.
// This identity will have a pin violation until the new master key is pinned
// (see `has_pin_violation()`).
let pinned_master_key = self.pinned_master_key.read().unwrap().clone();
// Check if the new master_key is signed by our own **verified**
// user_signing_key. If the identity was verified we remember it.
let updated_is_verified =
maybe_verified_own_user_signing_key.is_some_and(|own_user_signing_key| {
own_user_signing_key.verify_master_key(&master_key).is_ok()
});
let new = Self {
user_id: master_key.user_id().into(),
master_key: master_key.clone().into(),
self_signing_key: self_signing_key.into(),
pinned_master_key: RwLock::new(pinned_master_key).into(),
previously_verified: Arc::new(
(self.was_previously_verified() || updated_is_verified).into(),
),
};
let changed = new != *self;
*self = new;
Ok(changed)
}
/// Check if the given device has been signed by this identity.
///
/// The user_id of the user identity and the user_id of the device need to
/// match for the signature check to succeed as we don't trust users to sign
/// devices of other users.
///
/// # Arguments
///
/// * `device` - The device that should be checked for a valid signature.
///
/// Returns `true` if the signature check succeeded, otherwise `false`.
pub(crate) fn is_device_signed(&self, device: &DeviceData) -> bool {
self.user_id() == device.user_id() && self.self_signing_key.verify_device(device).is_ok()
}
}
/// Struct representing a cross signing identity of our own user.
///
/// This is the user identity of our own user. This user identity will contain a
/// master key, self signing key as well as a user signing key.
///
/// This identity can verify other identities as well as devices belonging to
/// the identity.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct OwnUserIdentityData {
user_id: OwnedUserId,
master_key: Arc<MasterPubkey>,
self_signing_key: Arc<SelfSigningPubkey>,
user_signing_key: Arc<UserSigningPubkey>,
#[serde(deserialize_with = "deserialize_own_user_identity_data_verified")]
verified: Arc<RwLock<OwnUserIdentityVerifiedState>>,
}
#[derive(Default, Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
enum OwnUserIdentityVerifiedState {
/// We have never verified our own identity
#[default]
NeverVerified,
/// We previously verified this identity, but it has changed.
#[serde(alias = "PreviouslyVerifiedButNoLonger")]
VerificationViolation,
/// We have verified the current identity.
Verified,
}
impl PartialEq for OwnUserIdentityData {
/// The `PartialEq` implementation compares several attributes, including
/// the user ID, key material, usage, and, notably, the signatures of
/// the master key.
///
/// This approach contrasts with the `PartialEq` implementation of the
/// [`MasterPubkey`], [`SelfSigningPubkey`] and [`UserSigningPubkey`] types,
/// where the signatures are disregarded. This distinction arises from our
/// treatment of identity as the combined representation of cross-signing
/// keys and the associated verification state.
///
/// The verification state of an identity depends on the signatures of the
/// master key, requiring their inclusion in our `PartialEq` implementation.
fn eq(&self, other: &Self) -> bool {
self.user_id == other.user_id
&& self.master_key == other.master_key
&& self.self_signing_key == other.self_signing_key
&& self.user_signing_key == other.user_signing_key
&& *self.verified.read().unwrap() == *other.verified.read().unwrap()
&& self.master_key.signatures() == other.master_key.signatures()
}
}
impl OwnUserIdentityData {
/// Create a new own user identity with the given master, self signing, and
/// user signing key.
///
/// # Arguments
///
/// * `master_key` - The master key of the user identity.
///
/// * `self_signing_key` - The self signing key of user identity.
///
/// * `user_signing_key` - The user signing key of user identity.
///
/// Returns a `SignatureError` if the self signing key fails to be correctly
/// verified by the given master key.
pub(crate) fn new(
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
user_signing_key: UserSigningPubkey,
) -> Result<Self, SignatureError> {
master_key.verify_subkey(&self_signing_key)?;
master_key.verify_subkey(&user_signing_key)?;
Ok(Self {
user_id: master_key.user_id().into(),
master_key: master_key.into(),
self_signing_key: self_signing_key.into(),
user_signing_key: user_signing_key.into(),
verified: Default::default(),
})
}
#[cfg(test)]
pub(crate) async fn from_private(identity: &crate::olm::PrivateCrossSigningIdentity) -> Self {
let master_key = identity.master_key.lock().await.as_ref().unwrap().public_key().clone();
let self_signing_key =
identity.self_signing_key.lock().await.as_ref().unwrap().public_key().clone();
let user_signing_key =
identity.user_signing_key.lock().await.as_ref().unwrap().public_key().clone();
Self {
user_id: identity.user_id().into(),
master_key: master_key.into(),
self_signing_key: self_signing_key.into(),
user_signing_key: user_signing_key.into(),
verified: Default::default(),
}
}
/// Get the user id of this identity.
pub fn user_id(&self) -> &UserId {
&self.user_id
}
/// Get the public master key of the identity.
pub fn master_key(&self) -> &MasterPubkey {
&self.master_key
}
/// Get the public self-signing key of the identity.
pub fn self_signing_key(&self) -> &SelfSigningPubkey {
&self.self_signing_key
}
/// Get the public user-signing key of the identity.
pub fn user_signing_key(&self) -> &UserSigningPubkey {
&self.user_signing_key
}
/// Check if the given user identity has been verified.
///
/// The identity of another user is verified iff our own identity is
/// verified and if our own identity has signed the other user's
/// identity.
///
/// # Arguments
///
/// * `identity` - The identity of another user which we want to check has
/// been verified.
pub fn is_identity_verified(&self, identity: &OtherUserIdentityData) -> bool {
self.is_verified() && self.is_identity_signed(identity)
}
/// Check if the given identity has been signed by this identity.
///
/// Note that, normally, you'll also want to check that the
/// `OwnUserIdentityData` has been verified; for that,
/// [`Self::is_identity_verified`] is more appropriate.
///
/// # Arguments
///
/// * `identity` - The identity of another user that we want to check if it
/// has been signed.
///
/// Returns `true` if the signature check succeeded, otherwise `false`.
pub(crate) fn is_identity_signed(&self, identity: &OtherUserIdentityData) -> bool {
self.user_signing_key.verify_master_key(&identity.master_key).is_ok()
}
/// Check if the given device has been signed by this identity.
///
/// Only devices of our own user should be checked with this method. If a
/// device of a different user is given, the signature check will always
/// fail even if a valid signature exists.
///
/// # Arguments
///
/// * `device` - The device that should be checked for a valid signature.
///
/// Returns `true` if the signature check succeeded, otherwise `false`.
pub(crate) fn is_device_signed(&self, device: &DeviceData) -> bool {
self.user_id() == device.user_id() && self.self_signing_key.verify_device(device).is_ok()
}
/// Mark our identity as verified.
pub fn mark_as_verified(&self) {
*self.verified.write().unwrap() = OwnUserIdentityVerifiedState::Verified;
}
/// Mark our identity as unverified.
pub(crate) fn mark_as_unverified(&self) {
let mut guard = self.verified.write().unwrap();
if *guard == OwnUserIdentityVerifiedState::Verified {
*guard = OwnUserIdentityVerifiedState::VerificationViolation;
}
}
/// Check if our identity is verified.
pub fn is_verified(&self) -> bool {
*self.verified.read().unwrap() == OwnUserIdentityVerifiedState::Verified
}
/// True if we verified our own identity at some point in the past.
///
/// To reset this latch back to `false`, one must call
/// [`OwnUserIdentityData::withdraw_verification()`].
pub fn was_previously_verified(&self) -> bool {
matches!(
*self.verified.read().unwrap(),
OwnUserIdentityVerifiedState::Verified
| OwnUserIdentityVerifiedState::VerificationViolation
)
}
/// Remove the requirement for this identity to be verified.
///
/// If an identity was previously verified and is not any more it will be
/// reported to the user. In order to remove this notice users have to
/// verify again or to withdraw the verification requirement.
pub fn withdraw_verification(&self) {
let mut guard = self.verified.write().unwrap();
if *guard == OwnUserIdentityVerifiedState::VerificationViolation {
*guard = OwnUserIdentityVerifiedState::NeverVerified;
}
}
/// Was this identity previously verified, and is no longer?
///
/// Such a violation should be reported to the local user by the
/// application, and resolved by
///
/// - Verifying the new identity with
/// [`OwnUserIdentity::request_verification`]
/// - Or by withdrawing the verification requirement
/// [`OwnUserIdentity::withdraw_verification`].
pub fn has_verification_violation(&self) -> bool {
*self.verified.read().unwrap() == OwnUserIdentityVerifiedState::VerificationViolation
}
/// Update the identity with a new master key and self signing key.
///
/// Note: This will reset the verification state if the master keys differ.
///
/// # Arguments
///
/// * `master_key` - The new master key of the user identity.
///
/// * `self_signing_key` - The new self signing key of user identity.
///
/// * `user_signing_key` - The new user signing key of user identity.
///
/// Returns a `SignatureError` if we failed to update the identity.
/// Otherwise, returns `true` if there was a change to the identity and
/// `false` if the identity is unchanged.
pub(crate) fn update(
&mut self,
master_key: MasterPubkey,
self_signing_key: SelfSigningPubkey,
user_signing_key: UserSigningPubkey,
) -> Result<bool, SignatureError> {
master_key.verify_subkey(&self_signing_key)?;
master_key.verify_subkey(&user_signing_key)?;
let old = self.clone();
self.self_signing_key = self_signing_key.into();
self.user_signing_key = user_signing_key.into();
if self.master_key.as_ref() != &master_key {
self.mark_as_unverified()
}
self.master_key = master_key.into();
Ok(old != *self)
}
fn filter_devices_to_request(
&self,
devices: HashMap<OwnedDeviceId, DeviceData>,
own_device_id: &DeviceId,
) -> Vec<OwnedDeviceId> {
devices
.into_iter()
.filter_map(|(device_id, device)| {
(device_id != own_device_id && self.is_device_signed(&device)).then_some(device_id)
})
.collect()
}
}
/// Custom deserializer for [`OwnUserIdentityData::verified`].
///
/// This used to be a bool, so we need to handle that.
fn deserialize_own_user_identity_data_verified<'de, D>(
de: D,
) -> Result<Arc<RwLock<OwnUserIdentityVerifiedState>>, D::Error>
where
D: Deserializer<'de>,
{
#[derive(Deserialize)]
#[serde(untagged)]
enum VerifiedStateOrBool {
VerifiedState(OwnUserIdentityVerifiedState),
Bool(bool),
}
let verified_state = match VerifiedStateOrBool::deserialize(de)? {
VerifiedStateOrBool::Bool(true) => OwnUserIdentityVerifiedState::Verified,
VerifiedStateOrBool::Bool(false) => OwnUserIdentityVerifiedState::NeverVerified,
VerifiedStateOrBool::VerifiedState(x) => x,
};
Ok(Arc::new(RwLock::new(verified_state)))
}
/// Testing Facilities
#[cfg(any(test, feature = "testing"))]
#[allow(dead_code)]
pub(crate) mod testing {
use matrix_sdk_test::ruma_response_from_json;
use ruma::{
api::client::keys::{
get_keys::v3::Response as KeyQueryResponse,
upload_signatures::v3::Request as SignatureUploadRequest,
},
user_id, UserId,
};
use serde_json::json;
use super::{OtherUserIdentityData, OwnUserIdentity, OwnUserIdentityData};
#[cfg(test)]
use crate::{identities::manager::testing::other_user_id, olm::PrivateCrossSigningIdentity};
use crate::{
identities::{
manager::testing::{other_key_query, own_key_query},
DeviceData,
},
store::Store,
types::CrossSigningKey,
verification::VerificationMachine,
};
/// Generate test devices from KeyQueryResponse
pub fn device(response: &KeyQueryResponse) -> (DeviceData, DeviceData) {
let mut devices = response.device_keys.values().next().unwrap().values();
let first =
DeviceData::try_from(&devices.next().unwrap().deserialize_as().unwrap()).unwrap();
let second =
DeviceData::try_from(&devices.next().unwrap().deserialize_as().unwrap()).unwrap();
(first, second)
}
/// Generate [`OwnUserIdentityData`] from a [`KeyQueryResponse`] for testing
pub fn own_identity(response: &KeyQueryResponse) -> OwnUserIdentityData {
let user_id = user_id!("@example:localhost");
let master_key: CrossSigningKey =
response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
let user_signing: CrossSigningKey =
response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
let self_signing: CrossSigningKey =
response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
OwnUserIdentityData::new(
master_key.try_into().unwrap(),
self_signing.try_into().unwrap(),
user_signing.try_into().unwrap(),
)
.unwrap()
}
/// Generate default own identity for tests
pub fn get_own_identity() -> OwnUserIdentityData {
own_identity(&own_key_query())
}
pub fn own_identity_wrapped(
inner: OwnUserIdentityData,
verification_machine: VerificationMachine,
store: Store,
) -> OwnUserIdentity {
OwnUserIdentity { inner, verification_machine, store }
}
/// Generate default other "own" identity for tests
#[cfg(test)]
pub async fn get_other_own_identity() -> OwnUserIdentityData {
let private_identity = PrivateCrossSigningIdentity::new(other_user_id().into());
OwnUserIdentityData::from_private(&private_identity).await
}
/// Generate default other identify for tests
pub fn get_other_identity() -> OtherUserIdentityData {
let user_id = user_id!("@example2:localhost");
let response = other_key_query();
let master_key: CrossSigningKey =
response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
let self_signing: CrossSigningKey =
response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
OtherUserIdentityData::new(master_key.try_into().unwrap(), self_signing.try_into().unwrap())
.unwrap()
}
/// When we want to test identities that are verified, we need to simulate
/// the verification process. This function supports that by simulating
/// what happens when a successful verification dance happens and
/// providing the /keys/query response we would get when that happened.
///
/// signature_upload_request will be the result of calling
/// [`super::OtherUserIdentity::verify`].
///
/// # Example
///
/// ```ignore
/// let signature_upload_request = their_identity.verify().await.unwrap();
///
/// let msk_json = json!({
/// "their_user_id": {
/// "keys": { "ed25519:blah": "blah" }
/// "signatures": {
/// "their_user_id": { "ed25519:blah": "blah", ... }
/// }
/// "usage": [ "master" ],
/// "user_id": "their_user_id"
/// }
/// });
///
/// let ssk_json = json!({
/// "their_user_id": {
/// "keys": { "ed25519:blah": "blah" },
/// "signatures": {
/// "their_user_id": { "ed25519:blah": "blah" }
/// },
/// "usage": [ "self_signing" ],
/// "user_id": "their_user_id"
/// }
/// })
///
/// let response = simulate_key_query_response_for_verification(
/// signature_upload_request,
/// my_identity,
/// my_user_id,
/// their_user_id,
/// msk_json,
/// ssk_json
/// ).await;
///
/// olm_machine
/// .mark_request_as_sent(
/// &TransactionId::new(),
/// crate::IncomingResponse::KeysQuery(&kq_response),
/// )
/// .await
/// .unwrap();
/// ```
pub fn simulate_key_query_response_for_verification(
signature_upload_request: SignatureUploadRequest,
my_identity: OwnUserIdentity,
my_user_id: &UserId,
their_user_id: &UserId,
msk_json: serde_json::Value,
ssk_json: serde_json::Value,
) -> KeyQueryResponse {
// Find the signed key inside the SignatureUploadRequest
let cross_signing_key: CrossSigningKey = serde_json::from_str(
signature_upload_request
.signed_keys
.get(their_user_id)
.expect("Signature upload request should contain a key for their user ID")
.iter()
.next()
.expect("There should be a key in the signature upload request")
.1
.get(),
)
.expect("Should not fail to deserialize the key");
// Find their master key that we want to update inside their msk JSON
let mut their_msk: CrossSigningKey = serde_json::from_value(
msk_json.get(their_user_id.as_str()).expect("msk should contain their user ID").clone(),
)
.expect("Should not fail to deserialize msk");
// Find our own user signing key
let my_user_signing_key_id = my_identity
.user_signing_key()
.keys()
.iter()
.next()
.expect("There should be a user signing key")
.0;
// Add the signature from the SignatureUploadRequest to their master key, under
// our user ID
their_msk.signatures.add_signature(
my_user_id.to_owned(),
my_user_signing_key_id.to_owned(),
cross_signing_key
.signatures
.get_signature(my_user_id, my_user_signing_key_id)
.expect("There should be a signature for our user"),
);
// Create a JSON response as if the verification has happened
ruma_response_from_json(&json!({
"device_keys": {}, // Don't need devices here, even though they would exist
"failures": {},
"master_keys": {
their_user_id: their_msk,
},
"self_signing_keys": ssk_json,
}))
}
}
#[cfg(test)]
pub(crate) mod tests {
use std::{collections::HashMap, sync::Arc};
use assert_matches::assert_matches;
use matrix_sdk_test::{async_test, test_json};
use ruma::{device_id, user_id, TransactionId};
use serde_json::{json, Value};
use tokio::sync::Mutex;
use super::{
testing::{device, get_other_identity, get_own_identity},
OtherUserIdentityDataSerializerV2, OwnUserIdentityData, OwnUserIdentityVerifiedState,
UserIdentityData,
};
use crate::{
identities::{
manager::testing::own_key_query,
user::{
testing::simulate_key_query_response_for_verification,
OtherUserIdentityDataSerializer,
},
Device,
},
olm::{Account, PrivateCrossSigningIdentity},
store::{CryptoStoreWrapper, MemoryStore},
types::{CrossSigningKey, MasterPubkey, SelfSigningPubkey, Signatures, UserSigningPubkey},
verification::VerificationMachine,
CrossSigningKeyExport, OlmMachine, OtherUserIdentityData,
};
#[test]
fn own_identity_create() {
let user_id = user_id!("@example:localhost");
let response = own_key_query();
let master_key: CrossSigningKey =
response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
let user_signing: CrossSigningKey =
response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
let self_signing: CrossSigningKey =
response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
OwnUserIdentityData::new(
master_key.try_into().unwrap(),
self_signing.try_into().unwrap(),
user_signing.try_into().unwrap(),
)
.unwrap();
}
#[test]
fn own_identity_partial_equality() {
let user_id = user_id!("@example:localhost");
let response = own_key_query();
let master_key: CrossSigningKey =
response.master_keys.get(user_id).unwrap().deserialize_as().unwrap();
let user_signing: CrossSigningKey =
response.user_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
let self_signing: CrossSigningKey =
response.self_signing_keys.get(user_id).unwrap().deserialize_as().unwrap();
let identity = OwnUserIdentityData::new(
master_key.clone().try_into().unwrap(),
self_signing.clone().try_into().unwrap(),
user_signing.clone().try_into().unwrap(),
)
.unwrap();
let mut master_key_updated_signature = master_key;
master_key_updated_signature.signatures = Signatures::new();
let updated_identity = OwnUserIdentityData::new(
master_key_updated_signature.try_into().unwrap(),
self_signing.try_into().unwrap(),
user_signing.try_into().unwrap(),
)
.unwrap();
assert_ne!(identity, updated_identity);
assert_eq!(identity.master_key(), updated_identity.master_key());
}
#[test]
fn other_identity_create() {
get_other_identity();
}
#[test]
fn deserialization_migration_test() {
let serialized_value = json!({
"user_id":"@example2:localhost",
"master_key":{
"user_id":"@example2:localhost",
"usage":[
"master"
],
"keys":{
"ed25519:kC/HmRYw4HNqUp/i4BkwYENrf+hd9tvdB7A1YOf5+Do":"kC/HmRYw4HNqUp/i4BkwYENrf+hd9tvdB7A1YOf5+Do"
},
"signatures":{
"@example2:localhost":{
"ed25519:SKISMLNIMH":"KdUZqzt8VScGNtufuQ8lOf25byYLWIhmUYpPENdmM8nsldexD7vj+Sxoo7PknnTX/BL9h2N7uBq0JuykjunCAw"
}
}
},
"self_signing_key":{
"user_id":"@example2:localhost",
"usage":[
"self_signing"
],
"keys":{
"ed25519:ZtFrSkJ1qB8Jph/ql9Eo/lKpIYCzwvKAKXfkaS4XZNc":"ZtFrSkJ1qB8Jph/ql9Eo/lKpIYCzwvKAKXfkaS4XZNc"
},
"signatures":{
"@example2:localhost":{
"ed25519:kC/HmRYw4HNqUp/i4BkwYENrf+hd9tvdB7A1YOf5+Do":"W/O8BnmiUETPpH02mwYaBgvvgF/atXnusmpSTJZeUSH/vHg66xiZOhveQDG4cwaW8iMa+t9N4h1DWnRoHB4mCQ"
}
}
}
});
let migrated: OtherUserIdentityData = serde_json::from_value(serialized_value).unwrap();
let pinned_master_key = migrated.pinned_master_key.read().unwrap();
assert_eq!(*pinned_master_key, migrated.master_key().clone());
// Serialize back
let value = serde_json::to_value(migrated.clone()).unwrap();
// Should be serialized with latest version
let _: OtherUserIdentityDataSerializerV2 =
serde_json::from_value(value.clone()).expect("Should deserialize as version 2");
let with_serializer: OtherUserIdentityDataSerializer =
serde_json::from_value(value).unwrap();
assert_eq!("2", with_serializer.version.unwrap());
}
/// [`OwnUserIdentityData::verified`] was previously an AtomicBool. Check
/// that we can deserialize boolean values.
#[test]
fn test_deserialize_own_user_identity_bool_verified() {
let mut json = own_user_identity_data();
// Set `"verified": false`
*json.get_mut("verified").unwrap() = false.into();
let id: OwnUserIdentityData = serde_json::from_value(json.clone()).unwrap();
assert_eq!(*id.verified.read().unwrap(), OwnUserIdentityVerifiedState::NeverVerified);
// Tweak the json to have `"verified": true`, and repeat
*json.get_mut("verified").unwrap() = true.into();
let id: OwnUserIdentityData = serde_json::from_value(json.clone()).unwrap();
assert_eq!(*id.verified.read().unwrap(), OwnUserIdentityVerifiedState::Verified);
}
#[test]
fn test_own_user_identity_verified_state_verification_violation_deserializes() {
// Given data containing verified: VerificationViolation
let mut json = own_user_identity_data();
*json.get_mut("verified").unwrap() = "VerificationViolation".into();
// When we deserialize
let id: OwnUserIdentityData = serde_json::from_value(json.clone()).unwrap();
// Then the value is correctly populated
assert_eq!(
*id.verified.read().unwrap(),
OwnUserIdentityVerifiedState::VerificationViolation
);
}
#[test]
fn test_own_user_identity_verified_state_previously_verified_deserializes() {
// Given data containing verified: PreviouslyVerifiedButNoLonger
let mut json = own_user_identity_data();
*json.get_mut("verified").unwrap() = "PreviouslyVerifiedButNoLonger".into();
// When we deserialize
let id: OwnUserIdentityData = serde_json::from_value(json.clone()).unwrap();
// Then the old value is re-interpreted as VerificationViolation
assert_eq!(
*id.verified.read().unwrap(),
OwnUserIdentityVerifiedState::VerificationViolation
);
}
#[test]
fn own_identity_check_signatures() {
let response = own_key_query();
let identity = get_own_identity();
let (first, second) = device(&response);
assert!(!identity.is_device_signed(&first));
assert!(identity.is_device_signed(&second));
let private_identity =
Arc::new(Mutex::new(PrivateCrossSigningIdentity::empty(second.user_id())));
let verification_machine = VerificationMachine::new(
Account::with_device_id(second.user_id(), second.device_id()).static_data,
private_identity,
Arc::new(CryptoStoreWrapper::new(
second.user_id(),
second.device_id(),
MemoryStore::new(),
)),
);
let first = Device {
inner: first,
verification_machine: verification_machine.clone(),
own_identity: Some(identity.clone()),
device_owner_identity: Some(UserIdentityData::Own(identity.clone())),
};
let second = Device {
inner: second,
verification_machine,
own_identity: Some(identity.clone()),
device_owner_identity: Some(UserIdentityData::Own(identity.clone())),
};
assert!(!second.is_locally_trusted());
assert!(!second.is_cross_signing_trusted());
assert!(!first.is_locally_trusted());
assert!(!first.is_cross_signing_trusted());
identity.mark_as_verified();
assert!(second.is_verified());
assert!(!first.is_verified());
}
#[async_test]
async fn test_own_device_with_private_identity() {
let response = own_key_query();
let (_, device) = device(&response);
let account = Account::with_device_id(device.user_id(), device.device_id());
let (identity, _, _) = PrivateCrossSigningIdentity::with_account(&account).await;
let id = Arc::new(Mutex::new(identity.clone()));
let verification_machine = VerificationMachine::new(
Account::with_device_id(device.user_id(), device.device_id()).static_data,
id.clone(),
Arc::new(CryptoStoreWrapper::new(
device.user_id(),
device.device_id(),
MemoryStore::new(),
)),
);
let public_identity = identity.to_public_identity().await.unwrap();
let mut device = Device {
inner: device,
verification_machine: verification_machine.clone(),
own_identity: Some(public_identity.clone()),
device_owner_identity: Some(public_identity.clone().into()),
};
assert!(!device.is_verified());
let mut device_keys = device.as_device_keys().to_owned();
identity.sign_device_keys(&mut device_keys).await.unwrap();
device.inner.update_device(&device_keys).expect("Couldn't update newly signed device keys");
assert!(device.is_verified());
}
/// Test that `CrossSigningKey` instances without a correct `usage` cannot
/// be deserialized into high-level structs representing the MSK, SSK
/// and USK.
#[test]
fn cannot_instantiate_keys_with_incorrect_usage() {
let user_id = user_id!("@example:localhost");
let response = own_key_query();
let master_key = response.master_keys.get(user_id).unwrap();
let mut master_key_json: Value = master_key.deserialize_as().unwrap();
let self_signing_key = response.self_signing_keys.get(user_id).unwrap();
let mut self_signing_key_json: Value = self_signing_key.deserialize_as().unwrap();
let user_signing_key = response.user_signing_keys.get(user_id).unwrap();
let mut user_signing_key_json: Value = user_signing_key.deserialize_as().unwrap();
// Delete the usages.
let usage = master_key_json.get_mut("usage").unwrap();
*usage = json!([]);
let usage = self_signing_key_json.get_mut("usage").unwrap();
*usage = json!([]);
let usage = user_signing_key_json.get_mut("usage").unwrap();
*usage = json!([]);
// It should now be impossible to deserialize the keys into their corresponding
// high-level cross-signing key structs.
assert_matches!(serde_json::from_value::<MasterPubkey>(master_key_json.clone()), Err(_));
assert_matches!(
serde_json::from_value::<SelfSigningPubkey>(self_signing_key_json.clone()),
Err(_)
);
assert_matches!(
serde_json::from_value::<UserSigningPubkey>(user_signing_key_json.clone()),
Err(_)
);
// Add additional usages.
let usage = master_key_json.get_mut("usage").unwrap();
*usage = json!(["master", "user_signing"]);
let usage = self_signing_key_json.get_mut("usage").unwrap();
*usage = json!(["self_signing", "user_signing"]);
let usage = user_signing_key_json.get_mut("usage").unwrap();
*usage = json!(["user_signing", "self_signing"]);
// It should still be impossible to deserialize the keys into their
// corresponding high-level cross-signing key structs.
assert_matches!(serde_json::from_value::<MasterPubkey>(master_key_json.clone()), Err(_));
assert_matches!(
serde_json::from_value::<SelfSigningPubkey>(self_signing_key_json.clone()),
Err(_)
);
assert_matches!(
serde_json::from_value::<UserSigningPubkey>(user_signing_key_json.clone()),
Err(_)
);
}
#[test]
fn filter_devices_to_request() {
let response = own_key_query();
let identity = get_own_identity();
let (first, second) = device(&response);
let second_device_id = second.device_id().to_owned();
let unknown_device_id = device_id!("UNKNOWN");
let devices = HashMap::from([
(first.device_id().to_owned(), first),
(second.device_id().to_owned(), second),
]);
// Own device and devices not verified are filtered out.
assert_eq!(identity.filter_devices_to_request(devices.clone(), &second_device_id).len(), 0);
// Signed devices that are not our own are kept.
assert_eq!(
identity.filter_devices_to_request(devices, unknown_device_id),
[second_device_id]
);
}
#[async_test]
async fn test_resolve_identity_pin_violation_with_verification() {
use test_json::keys_query_sets::IdentityChangeDataSet as DataSet;
let my_user_id = user_id!("@me:localhost");
let machine = OlmMachine::new(my_user_id, device_id!("ABCDEFGH")).await;
machine.bootstrap_cross_signing(false).await.unwrap();
let my_id = machine.get_identity(my_user_id, None).await.unwrap().unwrap().own().unwrap();
let keys_query = DataSet::key_query_with_identity_a();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
// Simulate an identity change
let keys_query = DataSet::key_query_with_identity_b();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
let other_user_id = DataSet::user_id();
let other_identity =
machine.get_identity(other_user_id, None).await.unwrap().unwrap().other().unwrap();
// The identity should need user approval now
assert!(other_identity.identity_needs_user_approval());
// Manually verify for the purpose of this test
let sig_upload = other_identity.verify().await.unwrap();
let kq_response = simulate_key_query_response_for_verification(
sig_upload,
my_id,
my_user_id,
other_user_id,
DataSet::master_signing_keys_b(),
DataSet::self_signing_keys_b(),
);
machine.mark_request_as_sent(&TransactionId::new(), &kq_response).await.unwrap();
// The identity should not need any user approval now
let other_identity =
machine.get_identity(other_user_id, None).await.unwrap().unwrap().other().unwrap();
assert!(!other_identity.identity_needs_user_approval());
// But there is still a pin violation
assert!(other_identity.inner.has_pin_violation());
}
#[async_test]
async fn test_resolve_identity_pin_violation_with_withdraw_verification() {
use test_json::keys_query_sets::IdentityChangeDataSet as DataSet;
let my_user_id = user_id!("@me:localhost");
let machine = OlmMachine::new(my_user_id, device_id!("ABCDEFGH")).await;
machine.bootstrap_cross_signing(false).await.unwrap();
let keys_query = DataSet::key_query_with_identity_a();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
// Simulate an identity change
let keys_query = DataSet::key_query_with_identity_b();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
let other_user_id = DataSet::user_id();
let other_identity =
machine.get_identity(other_user_id, None).await.unwrap().unwrap().other().unwrap();
// For testing purpose mark it as previously verified
other_identity.mark_as_previously_verified().await.unwrap();
// The identity should need user approval now
assert!(other_identity.identity_needs_user_approval());
// We withdraw verification
other_identity.withdraw_verification().await.unwrap();
// The identity should not need any user approval now
let other_identity =
machine.get_identity(other_user_id, None).await.unwrap().unwrap().other().unwrap();
assert!(!other_identity.identity_needs_user_approval());
// And should not have a pin violation
assert!(!other_identity.inner.has_pin_violation());
}
#[async_test]
async fn test_resolve_identity_verification_violation_with_withdraw() {
use test_json::keys_query_sets::VerificationViolationTestData as DataSet;
let machine = OlmMachine::new(DataSet::own_id(), device_id!("LOCAL")).await;
let keys_query = DataSet::own_keys_query_response_1();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
machine
.import_cross_signing_keys(CrossSigningKeyExport {
master_key: DataSet::MASTER_KEY_PRIVATE_EXPORT.to_owned().into(),
self_signing_key: DataSet::SELF_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
user_signing_key: DataSet::USER_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
})
.await
.unwrap();
let keys_query = DataSet::bob_keys_query_response_rotated();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
let bob_identity =
machine.get_identity(DataSet::bob_id(), None).await.unwrap().unwrap().other().unwrap();
// For testing purpose mark it as previously verified
bob_identity.mark_as_previously_verified().await.unwrap();
assert!(bob_identity.has_verification_violation());
// withdraw
bob_identity.withdraw_verification().await.unwrap();
let bob_identity =
machine.get_identity(DataSet::bob_id(), None).await.unwrap().unwrap().other().unwrap();
assert!(!bob_identity.has_verification_violation());
}
#[async_test]
async fn test_reset_own_keys_creates_verification_violation() {
use test_json::keys_query_sets::VerificationViolationTestData as DataSet;
let machine = OlmMachine::new(DataSet::own_id(), device_id!("LOCAL")).await;
let keys_query = DataSet::own_keys_query_response_1();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
machine
.import_cross_signing_keys(CrossSigningKeyExport {
master_key: DataSet::MASTER_KEY_PRIVATE_EXPORT.to_owned().into(),
self_signing_key: DataSet::SELF_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
user_signing_key: DataSet::USER_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
})
.await
.unwrap();
let keys_query = DataSet::bob_keys_query_response_signed();
let txn_id = TransactionId::new();
machine.mark_request_as_sent(&txn_id, &keys_query).await.unwrap();
let bob_identity =
machine.get_identity(DataSet::bob_id(), None).await.unwrap().unwrap().other().unwrap();
// For testing purpose mark it as previously verified
bob_identity.mark_as_previously_verified().await.unwrap();
assert!(!bob_identity.has_verification_violation());
let _ = machine.bootstrap_cross_signing(true).await.unwrap();
let bob_identity =
machine.get_identity(DataSet::bob_id(), None).await.unwrap().unwrap().other().unwrap();
assert!(bob_identity.has_verification_violation());
}
/// Test that receiving new public keys for our own identity causes a
/// verification violation on our own identity.
#[async_test]
async fn test_own_keys_update_creates_own_identity_verification_violation() {
use test_json::keys_query_sets::VerificationViolationTestData as DataSet;
let machine = OlmMachine::new(DataSet::own_id(), device_id!("LOCAL")).await;
// Start with our own identity verified
let own_keys = DataSet::own_keys_query_response_1();
machine.mark_request_as_sent(&TransactionId::new(), &own_keys).await.unwrap();
machine
.import_cross_signing_keys(CrossSigningKeyExport {
master_key: DataSet::MASTER_KEY_PRIVATE_EXPORT.to_owned().into(),
self_signing_key: DataSet::SELF_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
user_signing_key: DataSet::USER_SIGNING_KEY_PRIVATE_EXPORT.to_owned().into(),
})
.await
.unwrap();
// Double-check that we have a verified identity
let own_identity = machine.get_identity(DataSet::own_id(), None).await.unwrap().unwrap();
assert!(own_identity.is_verified());
assert!(own_identity.was_previously_verified());
assert!(!own_identity.has_verification_violation());
// Now, we receive a *different* set of public keys
let own_keys = DataSet::own_keys_query_response_2();
machine.mark_request_as_sent(&TransactionId::new(), &own_keys).await.unwrap();
// That should give an identity that is no longer verified, with a verification
// violation.
let own_identity = machine.get_identity(DataSet::own_id(), None).await.unwrap().unwrap();
assert!(!own_identity.is_verified());
assert!(own_identity.was_previously_verified());
assert!(own_identity.has_verification_violation());
// Now check that we can withdraw verification for our own identity, and that it
// becomes valid again.
own_identity.withdraw_verification().await.unwrap();
assert!(!own_identity.is_verified());
assert!(!own_identity.was_previously_verified());
assert!(!own_identity.has_verification_violation());
}
fn own_user_identity_data() -> Value {
json!({
"user_id": "@example:localhost",
"master_key": {
"user_id":"@example:localhost",
"usage":["master"],
"keys":{"ed25519:rJ2TAGkEOP6dX41Ksll6cl8K3J48l8s/59zaXyvl2p0":"rJ2TAGkEOP6dX41Ksll6cl8K3J48l8s/59zaXyvl2p0"},
},
"self_signing_key": {
"user_id":"@example:localhost",
"usage":["self_signing"],
"keys":{"ed25519:0C8lCBxrvrv/O7BQfsKnkYogHZX3zAgw3RfJuyiq210":"0C8lCBxrvrv/O7BQfsKnkYogHZX3zAgw3RfJuyiq210"}
},
"user_signing_key": {
"user_id":"@example:localhost",
"usage":["user_signing"],
"keys":{"ed25519:DU9z4gBFKFKCk7a13sW9wjT0Iyg7Hqv5f0BPM7DEhPo":"DU9z4gBFKFKCk7a13sW9wjT0Iyg7Hqv5f0BPM7DEhPo"}
},
"verified": false
})
}
}