1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright 2021 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::BTreeMap;

use matrix_sdk_base::{
    crypto::{types::MasterPubkey, UserIdentities as CryptoUserIdentities},
    RoomMemberships,
};
use ruma::{
    events::{
        key::verification::VerificationMethod,
        room::message::{MessageType, RoomMessageEventContent},
    },
    OwnedUserId, UserId,
};

use super::{ManualVerifyError, RequestVerificationError};
use crate::{encryption::verification::VerificationRequest, Client};

/// Updates about [`UserIdentity`]s which got received over the `/keys/query`
/// endpoint.
#[derive(Clone, Debug, Default)]
pub struct IdentityUpdates {
    /// The list of newly discovered user identities .
    ///
    /// A identity being in this list does not necessarily mean that the
    /// identity was just created, it just means that it's the first time
    /// we're seeing this identity.
    pub new: BTreeMap<OwnedUserId, UserIdentity>,
    /// The list of changed identities.
    pub changed: BTreeMap<OwnedUserId, UserIdentity>,
}

impl IdentityUpdates {
    pub(crate) fn new(
        client: Client,
        updates: matrix_sdk_base::crypto::store::IdentityUpdates,
    ) -> Self {
        let new = updates
            .new
            .into_iter()
            .map(|(user_id, identity)| (user_id, UserIdentity::new(client.to_owned(), identity)))
            .collect();

        let changed = updates
            .changed
            .into_iter()
            .map(|(user_id, identity)| (user_id, UserIdentity::new(client.to_owned(), identity)))
            .collect();

        Self { new, changed }
    }
}

/// A struct representing a E2EE capable identity of a user.
///
/// The identity is backed by public [cross signing] keys that users upload. If
/// our own user doesn't yet have such an identity, a new one can be created and
/// uploaded to the server using [`Encryption::bootstrap_cross_signing()`]. The
/// user identity can be also reset using the same method.
///
/// The user identity consists of three separate `Ed25519` keypairs:
///
/// ```text
///           ┌──────────────────────────────────────────────────────┐
///           │                    User Identity                     │
///           ├────────────────┬──────────────────┬──────────────────┤
///           │   Master Key   │ Self-signing Key │ User-signing key │
///           └────────────────┴──────────────────┴──────────────────┘
/// ```
///
/// The identity consists of a Master key and two sub-keys, the Self-signing key
/// and the User-signing key.
///
/// Each key has a separate role:
/// * Master key, signs only the sub-keys, can be used as a fingerprint of the
/// identity.
/// * Self-signing key, signs devices belonging to the user that owns this
/// identity.
/// * User-signing key, signs Master keys belonging to other users.
///
/// The User-signing key and its signatures of other user's Master keys are
/// hidden from us by the homeserver. This is done to preserve privacy and not
/// let us know whom the user verified.
///
/// [cross signing]: https://spec.matrix.org/unstable/client-server-api/#cross-signing
/// [`Encryption::bootstrap_cross_signing()`]: crate::encryption::Encryption::bootstrap_cross_signing
#[derive(Debug, Clone)]
pub struct UserIdentity {
    inner: UserIdentities,
}

impl UserIdentity {
    pub(crate) fn new(client: Client, identity: CryptoUserIdentities) -> Self {
        let inner = UserIdentities { client, identity };
        Self { inner }
    }

    /// The ID of the user this identity belongs to.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{Client, ruma::user_id};
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// if let Some(user) = user {
    ///     println!("This user identity belongs to {}", user.user_id());
    /// }
    ///
    /// # anyhow::Ok(()) };
    /// ```
    pub fn user_id(&self) -> &UserId {
        match &self.inner.identity {
            CryptoUserIdentities::Own(identity) => identity.user_id(),
            CryptoUserIdentities::Other(identity) => identity.user_id(),
        }
    }

    /// Request an interactive verification with this `UserIdentity`.
    ///
    /// Returns a [`VerificationRequest`] object that can be used to control the
    /// verification flow.
    ///
    /// This will send out a `m.key.verification.request` event. Who such an
    /// event will be sent to depends on if we're verifying our own identity or
    /// someone else's:
    ///
    /// * Our own identity - All our E2EE capable devices will receive the event
    /// over to-device messaging.
    /// * Someone else's identity - The event will be sent to a DM room we share
    /// with the user, if we don't share a DM with the user, one will be
    /// created.
    ///
    /// The default methods that are supported are:
    ///
    /// * `m.sas.v1` - Short auth string, or emoji based verification
    /// * `m.qr_code.show.v1` - QR code based verification
    ///
    /// [`request_verification_with_methods()`] method can be
    /// used to override this. The `m.qr_code.show.v1` method is only available
    /// if the `qrcode` feature is enabled, which it is by default.
    ///
    /// Check out the [`verification`] module for more info on how to handle
    /// interactive verifications.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{Client, ruma::user_id};
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// if let Some(user) = user {
    ///     let verification = user.request_verification().await?;
    /// }
    ///
    /// # anyhow::Ok(()) };
    /// ```
    ///
    /// [`request_verification_with_methods()`]:
    /// #method.request_verification_with_methods
    /// [`verification`]: crate::encryption::verification
    pub async fn request_verification(
        &self,
    ) -> Result<VerificationRequest, RequestVerificationError> {
        self.inner.request_verification(None).await
    }

    /// Request an interactive verification with this `UserIdentity` using the
    /// selected methods.
    ///
    /// Returns a [`VerificationRequest`] object that can be used to control the
    /// verification flow.
    ///
    /// This methods behaves the same way as [`request_verification()`],
    /// but the advertised verification methods can be manually selected.
    ///
    /// Check out the [`verification`] module for more info on how to handle
    /// interactive verifications.
    ///
    /// # Arguments
    ///
    /// * `methods` - The verification methods that we want to support. Must be
    /// non-empty.
    ///
    /// # Panics
    ///
    /// This method will panic if `methods` is empty.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{
    /// #    Client,
    /// #    ruma::{
    /// #        user_id,
    /// #        events::key::verification::VerificationMethod,
    /// #    }
    /// # };
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// // We don't want to support showing a QR code, we only support SAS
    /// // verification
    /// let methods = vec![VerificationMethod::SasV1];
    ///
    /// if let Some(user) = user {
    ///     let verification =
    ///         user.request_verification_with_methods(methods).await?;
    /// }
    /// # anyhow::Ok(()) };
    /// ```
    ///
    /// [`request_verification()`]: #method.request_verification
    /// [`verification`]: crate::encryption::verification
    pub async fn request_verification_with_methods(
        &self,
        methods: Vec<VerificationMethod>,
    ) -> Result<VerificationRequest, RequestVerificationError> {
        assert!(!methods.is_empty(), "The list of verification methods can't be non-empty");

        self.inner.request_verification(Some(methods)).await
    }

    /// Manually verify this [`UserIdentity`].
    ///
    /// This method will do different things depending on if the user identity
    /// belongs to us, or if the user identity belongs to someone else. Users
    /// that chose to manually verify a user identity should make sure that the
    /// Master key does match to to the `Ed25519` they expect.
    ///
    /// The Master key can be inspected using the [`UserIdentity::master_key()`]
    /// method.
    ///
    /// ### Manually verifying other users
    ///
    /// This method will attempt to sign the user identity using our private
    /// parts of the cross signing keys. The method will attempt to sign the
    /// Master key of the user using our own User-signing key. This will of
    /// course fail if the private part of the User-signing key isn't available.
    ///
    /// The availability of the User-signing key can be checked using the
    /// [`Encryption::cross_signing_status()`] method.
    ///
    /// ### Manually verifying our own user
    ///
    /// On the other hand, if the user identity belongs to us, it will be
    /// marked as verified using a local flag, our own device will also sign the
    /// Master key. Manually verifying our own user identity can't fail.
    ///
    /// ### Problems of manual verification
    ///
    /// Manual verification may be more convenient to use, i.e. both users need
    /// to be online and available to interactively verify each other. Despite
    /// the convenience, interactive verifications should be generally
    /// preferred. Manually verifying a user won't notify the other user, the
    /// one being verified, that they should also verify us. This means that
    /// user `A` will consider user `B` to be verified, but not the other way
    /// around.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{
    /// #    Client,
    /// #    ruma::{
    /// #        user_id,
    /// #        events::key::verification::VerificationMethod,
    /// #    }
    /// # };
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// if let Some(user) = user {
    ///     user.verify().await?;
    /// }
    /// # anyhow::Ok(()) };
    /// ```
    /// [`Encryption::cross_signing_status()`]: crate::encryption::Encryption::cross_signing_status
    pub async fn verify(&self) -> Result<(), ManualVerifyError> {
        self.inner.verify().await
    }

    /// Is the user identity considered to be verified.
    ///
    /// A user identity is considered to be verified if:
    ///
    /// * It has been signed by our User-signing key, if the identity belongs
    /// to another user
    /// * If it has been locally marked as verified, if the user identity
    /// belongs to us.
    ///
    /// If the identity belongs to another user, our own user identity needs to
    /// be verified as well for the identity to be considered to be verified.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{
    /// #    Client,
    /// #    ruma::{
    /// #        user_id,
    /// #        events::key::verification::VerificationMethod,
    /// #    }
    /// # };
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// if let Some(user) = user {
    ///     if user.is_verified() {
    ///         println!("User {} is verified", user.user_id());
    ///     } else {
    ///         println!("User {} is not verified", user.user_id());
    ///     }
    /// }
    /// # anyhow::Ok(()) };
    /// ```
    pub fn is_verified(&self) -> bool {
        match &self.inner.identity {
            CryptoUserIdentities::Own(identity) => identity.is_verified(),
            CryptoUserIdentities::Other(identity) => identity.is_verified(),
        }
    }

    /// Get the public part of the Master key of this user identity.
    ///
    /// The public part of the Master key is usually used to uniquely identify
    /// the identity.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # use matrix_sdk::{
    /// #    Client,
    /// #    ruma::{
    /// #        user_id,
    /// #        events::key::verification::VerificationMethod,
    /// #    }
    /// # };
    /// # use url::Url;
    /// # let alice = user_id!("@alice:example.org");
    /// # let homeserver = Url::parse("http://example.com").unwrap();
    /// # async {
    /// # let client = Client::new(homeserver).await.unwrap();
    /// let user = client.encryption().get_user_identity(alice).await?;
    ///
    /// if let Some(user) = user {
    ///     // Let's verify the user after we confirm that the master key
    ///     // matches what we expect, for this we fetch the first public key we
    ///     // can find, there's currently only a single key allowed so this is
    ///     // fine.
    ///     if user.master_key().get_first_key().map(|k| k.to_base64())
    ///         == Some("MyMasterKey".to_string())
    ///     {
    ///         println!(
    ///             "Master keys match for user {}, marking the user as verified",
    ///             user.user_id(),
    ///         );
    ///         user.verify().await?;
    ///     } else {
    ///         println!("Master keys don't match for user {}", user.user_id());
    ///     }
    /// }
    /// # anyhow::Ok(()) };
    /// ```
    pub fn master_key(&self) -> &MasterPubkey {
        match &self.inner.identity {
            CryptoUserIdentities::Own(identity) => identity.master_key(),
            CryptoUserIdentities::Other(identity) => identity.master_key(),
        }
    }
}

#[derive(Debug, Clone)]
struct UserIdentities {
    client: Client,
    identity: CryptoUserIdentities,
}

impl UserIdentities {
    async fn request_verification(
        &self,
        methods: Option<Vec<VerificationMethod>>,
    ) -> Result<VerificationRequest, RequestVerificationError> {
        match &self.identity {
            CryptoUserIdentities::Own(identity) => {
                let (verification, request) = if let Some(methods) = methods {
                    identity
                        .request_verification_with_methods(methods)
                        .await
                        .map_err(crate::Error::from)?
                } else {
                    identity.request_verification().await.map_err(crate::Error::from)?
                };

                self.client.send_verification_request(request).await?;

                Ok(VerificationRequest { inner: verification, client: self.client.clone() })
            }
            CryptoUserIdentities::Other(i) => {
                let content = i.verification_request_content(methods.clone()).await;

                let room = if let Some(room) = self.client.get_dm_room(i.user_id()) {
                    // Make sure that the user, to be verified, is still in the room
                    if !room
                        .members(RoomMemberships::ACTIVE)
                        .await?
                        .iter()
                        .any(|member| member.user_id() == i.user_id())
                    {
                        room.invite_user_by_id(i.user_id()).await?;
                    }
                    room.clone()
                } else {
                    self.client.create_dm(i.user_id()).await?
                };

                let response = room
                    .send(RoomMessageEventContent::new(MessageType::VerificationRequest(content)))
                    .await?;

                let verification =
                    i.request_verification(room.room_id(), &response.event_id, methods).await;

                Ok(VerificationRequest { inner: verification, client: self.client.clone() })
            }
        }
    }

    async fn verify(&self) -> Result<(), ManualVerifyError> {
        let request = match &self.identity {
            CryptoUserIdentities::Own(identity) => identity.verify().await?,
            CryptoUserIdentities::Other(identity) => identity.verify().await?,
        };
        self.client.send(request, None).await?;
        Ok(())
    }
}