matrix_sdk_crypto/ciphers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// Copyright 2023 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use aes::{
cipher::{generic_array::GenericArray, IvSizeUser, KeyIvInit, KeySizeUser, StreamCipher},
Aes256,
};
use ctr::Ctr128BE;
use hkdf::Hkdf;
use hmac::{
digest::{FixedOutput, MacError},
Hmac, Mac as _,
};
use pbkdf2::pbkdf2;
use rand::{thread_rng, RngCore};
use sha2::{Sha256, Sha512};
use zeroize::{Zeroize, ZeroizeOnDrop};
// We could use the `keysize()` method Aes256Ctr as KeySize exposes, but it's
// not const (yet?), same for the IV size.
pub(crate) const IV_SIZE: usize = 16;
pub(crate) const KEY_SIZE: usize = 32;
pub(crate) const SALT_SIZE: usize = 16;
pub(crate) const MAC_SIZE: usize = 32;
type Aes256Ctr = Ctr128BE<Aes256>;
type Aes256Key = GenericArray<u8, <Aes256Ctr as KeySizeUser>::KeySize>;
type Aes256Iv = GenericArray<u8, <Aes256Ctr as IvSizeUser>::IvSize>;
type HmacSha256Key = [u8; KEY_SIZE];
/// An authentication tag for the HMAC-SHA-256 message authentication algorithm.
#[derive(Debug)]
pub(crate) struct HmacSha256Mac([u8; MAC_SIZE]);
impl HmacSha256Mac {
/// Represent the MAC tag as an array of bytes.
pub(crate) fn as_bytes(&self) -> &[u8; MAC_SIZE] {
&self.0
}
/// Return the underlying array of bytes of the authentication tag.
pub(crate) fn into_bytes(self) -> [u8; MAC_SIZE] {
self.0
}
/// Try to create a [`HmacSha256Mac`] from a slice of bytes.
///
/// Returns `None` if the length of the byte slice isn't 32 bytes.
pub(crate) fn from_slice(bytes: &[u8]) -> Option<Self> {
if bytes.len() != MAC_SIZE {
None
} else {
let mut mac = [0u8; MAC_SIZE];
mac.copy_from_slice(bytes);
Some(HmacSha256Mac(mac))
}
}
}
/// Keys used for our combination of AES-CTR-256 and HMAC-SHA-256.
///
/// ⚠️ This struct provides low-level cryptographic primitives.
///
/// This combination is, as of now, used in the following places:
///
/// 1. Secret storage[1]
/// 2. File-based key exports[2]
///
/// [1]: https://spec.matrix.org/v1.8/client-server-api/#msecret_storagev1aes-hmac-sha2
/// [2]: https://spec.matrix.org/v1.8/client-server-api/#key-exports
#[derive(Zeroize, ZeroizeOnDrop)]
pub(crate) struct AesHmacSha2Key {
aes_key: Box<[u8; KEY_SIZE]>,
mac_key: Box<[u8; KEY_SIZE]>,
}
impl AesHmacSha2Key {
/// Create a [`AesHmacSha2Key`] from a passphrase.
///
/// The passphrase will be expanded using the algorithm described in the
/// "Key export" part of the [spec].
///
/// [spec]: https://spec.matrix.org/v1.8/client-server-api/#key-exports
const ZERO_SALT: &'static [u8; 32] = &[0u8; 32];
/// Create a per-secret specific [`AesHmacSha2Key`] from the secret storage
/// key.
///
/// The secret storage key will be expanded as described in the [spec].
///
/// [spec]: https://spec.matrix.org/v1.8/client-server-api/#msecret_storagev1aes-hmac-sha2
pub(crate) fn from_secret_storage_key(
secret_storage_key: &[u8; KEY_SIZE],
secret_name: &str,
) -> Self {
let mut expanded_keys = [0u8; KEY_SIZE * 2];
let hkdf: Hkdf<Sha256> = Hkdf::new(Some(Self::ZERO_SALT), secret_storage_key);
hkdf.expand(secret_name.as_bytes(), &mut expanded_keys)
.expect("We should be able to expand 64 bytes of output key material.");
let (aes_key, mac_key) = Self::split_keys(&expanded_keys);
expanded_keys.zeroize();
Self { aes_key, mac_key }
}
pub(crate) fn from_passphrase(
passphrase: &str,
pbkdf_rounds: u32,
salt: &[u8; SALT_SIZE],
) -> Self {
let mut expanded_keys = [0u8; KEY_SIZE * 2];
pbkdf2::<Hmac<Sha512>>(passphrase.as_bytes(), salt, pbkdf_rounds, &mut expanded_keys)
.expect(
"We should be able to expand a passphrase of any length due to \
HMAC being able to be initialized with any input size",
);
let (aes_key, mac_key) = Self::split_keys(&expanded_keys);
expanded_keys.zeroize();
Self { aes_key, mac_key }
}
/// Encrypt the given plaintext and return the ciphertext and the
/// initialization vector.
///
/// ⚠️ This method is a low-level cryptographic primitive.
///
/// This method does not provide authenticity. You *must* call the
/// [`AesHmacSha2Key::create_mac_tag()`] method after the encryption step to
/// create a authentication tag.
pub(crate) fn encrypt(&self, plaintext: Vec<u8>) -> (Vec<u8>, [u8; IV_SIZE]) {
let initialization_vector = Self::generate_iv();
let ciphertext = self.apply_keystream(plaintext, &initialization_vector);
(ciphertext, initialization_vector)
}
/// Apply the keystream to the data stream, producing either the plaintext
/// or the ciphertext depending on whether the data stream is the ciphertext
/// or the plaintext, respectively.
///
/// ⚠️ This method is a low-level cryptographic primitive.
///
/// If this method is encrypting a plaintext, you *must* ensure that the
/// initialization vector is unique across all calls to this method for
/// a given key.
///
/// This method does not provide authenticity. You *must* call the
/// [`AesHmacSha2Key::create_mac_tag()`] method after the encryption step to
/// create a authentication tag or the [`AesHmacSha2Key::verify_mac()`]
/// method before decrypting.
pub(crate) fn apply_keystream(
&self,
mut plaintext: Vec<u8>,
initialization_vector: &[u8; IV_SIZE],
) -> Vec<u8> {
let mut cipher =
Aes256Ctr::new(self.aes_key(), Aes256Iv::from_slice(initialization_vector));
cipher.apply_keystream(&mut plaintext);
plaintext
}
/// Create an authentication tag for the given ciphertext.
///
/// ⚠️ This method is a low-level cryptographic primitive.
///
/// This method *must* be called after a call to
/// [`AesHmacSha2Key::encrypt()`]. The authentication tag must be
/// provided besides the ciphertext for a decryption attempt.
pub(crate) fn create_mac_tag(&self, ciphertext: &[u8]) -> HmacSha256Mac {
let mut mac = [0u8; 32];
let mac_array = GenericArray::from_mut_slice(&mut mac);
let mut hmac = Hmac::<Sha256>::new_from_slice(self.mac_key())
.expect("We should be able to create a new HMAC object from our 32 byte MAC key");
hmac.update(ciphertext);
hmac.finalize_into(mac_array);
HmacSha256Mac(mac)
}
/// Verify an authentication tag for the given, encrypted, message.
///
/// You *must* use this method to compare the authentication tags. This
/// method provides a constant-time comparison for the authentication tags.
///
/// This method *must* be called before a call to
/// [`AesHmacSha2Key::decrypt()`].
pub(crate) fn verify_mac(&self, message: &[u8], mac: &[u8; MAC_SIZE]) -> Result<(), MacError> {
let mac_array = GenericArray::from_slice(mac);
let mut hmac = Hmac::<Sha256>::new_from_slice(self.mac_key())
.expect("We should be able to create a new HMAC object from our 32 byte MAC key");
hmac.update(message);
hmac.verify(mac_array)
}
/// Decrypt the given ciphertext and return the decrypted plaintext.
///
/// The method does not provide authenticity. You *must* call the
/// [`AesHmacSha2Key::verify_mac()`] method before the decryption step to
/// verify the authentication tag.
pub(crate) fn decrypt(
&self,
ciphertext: Vec<u8>,
initialization_vector: &[u8; IV_SIZE],
) -> Vec<u8> {
self.apply_keystream(ciphertext, initialization_vector)
}
fn split_keys(
expanded_keys: &[u8; KEY_SIZE * 2],
) -> (Box<[u8; KEY_SIZE]>, Box<[u8; KEY_SIZE]>) {
let mut aes_key = Box::new([0u8; KEY_SIZE]);
let mut mac_key = Box::new([0u8; KEY_SIZE]);
aes_key.copy_from_slice(&expanded_keys[0..32]);
mac_key.copy_from_slice(&expanded_keys[32..64]);
(aes_key, mac_key)
}
/// Generate a new, random initialization vector.
///
/// The initialization vector will be clamped and will be used to encrypt
/// the ciphertext.
fn generate_iv() -> [u8; IV_SIZE] {
let mut rng = thread_rng();
let mut iv = [0u8; IV_SIZE];
rng.fill_bytes(&mut iv);
Self::clamp_iv(iv)
}
/// The spec tells us to set bit 63 to 0 in some cases for some reason, I'm
/// not sure why, but fine:
/// Generate 16 random bytes, set bit 63 to 0 (in order to work around
/// differences in AES-CTR implementations), and use this as the AES
/// initialization vector. This becomes the iv property, encoded using
/// base64[1].
///
/// [1]: https://spec.matrix.org/v1.8/client-server-api/#msecret_storagev1aes-hmac-sha2
fn clamp_iv(iv: [u8; 16]) -> [u8; IV_SIZE] {
let mut iv = u128::from_be_bytes(iv);
iv &= !(1 << 63);
iv.to_be_bytes()
}
/// Get the encryption key.
fn aes_key(&self) -> &Aes256Key {
Aes256Key::from_slice(self.aes_key.as_slice())
}
/// Get the authentication key.
fn mac_key(&self) -> &HmacSha256Key {
&self.mac_key
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn encryption_roundtrip() {
let plaintext = "It's a secret to everybody";
let salt = [0u8; SALT_SIZE];
let key = AesHmacSha2Key::from_passphrase("My passphrase", 10, &salt);
let (ciphertext, iv) = key.encrypt(plaintext.as_bytes().to_vec());
let mac = key.create_mac_tag(&ciphertext);
key.verify_mac(&ciphertext, mac.as_bytes())
.expect("The MAC tag should be successfully verified");
let decrypted = key.decrypt(ciphertext, &iv);
assert_eq!(
plaintext.as_bytes(),
decrypted,
"An encryption roundtrip should produce the same plaintext"
);
}
#[test]
fn mac_decoding() {
let invalid_mac = [0u8; 10];
assert!(
HmacSha256Mac::from_slice(&invalid_mac).is_none(),
"We should return an error if the MAC is too short"
);
let mac = [0u8; 32];
HmacSha256Mac::from_slice(&mac)
.expect("We should be able to create a MAC from a 32 byte long slice");
}
}