matrix_sdk/deduplicating_handler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
// Copyright 2023 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Facilities to deduplicate similar queries running at the same time.
//!
//! See [`DeduplicatingHandler`].
use std::{collections::BTreeMap, sync::Arc};
use futures_core::Future;
use matrix_sdk_common::SendOutsideWasm;
use tokio::sync::Mutex;
use crate::{Error, Result};
/// State machine for the state of a query deduplicated by the
/// [`DeduplicatingHandler`].
enum QueryState {
/// The query hasn't completed. This doesn't mean it hasn't *started* yet,
/// but rather that it couldn't get to completion: some intermediate
/// steps might have run.
Cancelled,
/// The query has completed with an `Ok` result.
Success,
/// The query has completed with an `Err` result.
Failure,
}
type DeduplicatedRequestMap<Key> = Mutex<BTreeMap<Key, Arc<Mutex<QueryState>>>>;
/// Handler that properly deduplicates function calls given a key uniquely
/// identifying the call kind, and will properly report error upwards in case
/// the concurrent call failed.
///
/// This is handy for deduplicating per-room requests, but can also be used in
/// other contexts.
pub(crate) struct DeduplicatingHandler<Key> {
/// Map of outstanding function calls, grouped by key.
inflight: DeduplicatedRequestMap<Key>,
}
impl<Key> Default for DeduplicatingHandler<Key> {
fn default() -> Self {
Self { inflight: Default::default() }
}
}
impl<Key: Clone + Ord + std::hash::Hash> DeduplicatingHandler<Key> {
/// Runs the given code if and only if there wasn't a similar query running
/// for the same key.
///
/// Note: the `code` may be run multiple times, if the first query to run it
/// has been aborted by the caller (i.e. the future has been dropped).
/// As a consequence, it's important that the `code` future be
/// idempotent.
///
/// See also [`DeduplicatingHandler`] for more details.
pub async fn run<'a, F: Future<Output = Result<()>> + SendOutsideWasm + 'a>(
&self,
key: Key,
code: F,
) -> Result<()> {
let mut map = self.inflight.lock().await;
if let Some(request_mutex) = map.get(&key).cloned() {
// If a request is already going on, await the release of the lock.
drop(map);
let mut request_guard = request_mutex.lock().await;
return match *request_guard {
QueryState::Success => {
// The query completed with a success: forward this success.
Ok(())
}
QueryState::Failure => {
// The query completed with an error, but we don't know what it is; report
// there was an error.
Err(Error::ConcurrentRequestFailed)
}
QueryState::Cancelled => {
// If we could take a hold onto the mutex without it being in the success or
// failure state, then the query hasn't completed (e.g. it could have been
// cancelled). Repeat it.
//
// Note: there might be other waiters for the deduplicated result; they will
// still be waiting for the mutex above, since the mutex is obtained for at
// most one holder at the same time.
self.run_code(key, code, &mut request_guard).await
}
};
}
// Let's assume the cancelled state, if we succeed or fail we'll modify the
// result.
let request_mutex = Arc::new(Mutex::new(QueryState::Cancelled));
map.insert(key.clone(), request_mutex.clone());
let mut request_guard = request_mutex.lock().await;
drop(map);
self.run_code(key, code, &mut request_guard).await
}
async fn run_code<'a, F: Future<Output = Result<()>> + SendOutsideWasm + 'a>(
&self,
key: Key,
code: F,
result: &mut QueryState,
) -> Result<()> {
match code.await {
Ok(()) => {
// Mark the request as completed.
*result = QueryState::Success;
self.inflight.lock().await.remove(&key);
Ok(())
}
Err(err) => {
// Propagate the error state to other callers.
*result = QueryState::Failure;
// Remove the request from the in-flights set.
self.inflight.lock().await.remove(&key);
// Bubble up the error.
Err(err)
}
}
}
}
// Sorry wasm32, you don't have tokio::join :(
#[cfg(all(test, not(target_arch = "wasm32")))]
mod tests {
use std::sync::Arc;
use matrix_sdk_test::async_test;
use tokio::{join, spawn, sync::Mutex, task::yield_now};
use crate::deduplicating_handler::DeduplicatingHandler;
#[async_test]
async fn test_deduplicating_handler_same_key() -> anyhow::Result<()> {
let num_calls = Arc::new(Mutex::new(0));
let inner = || {
let num_calls_cloned = num_calls.clone();
async move {
yield_now().await;
*num_calls_cloned.lock().await += 1;
yield_now().await;
Ok(())
}
};
let handler = DeduplicatingHandler::default();
let (first, second) = join!(handler.run(0, inner()), handler.run(0, inner()));
assert!(first.is_ok());
assert!(second.is_ok());
assert_eq!(*num_calls.lock().await, 1);
Ok(())
}
#[async_test]
async fn test_deduplicating_handler_different_keys() -> anyhow::Result<()> {
let num_calls = Arc::new(Mutex::new(0));
let inner = || {
let num_calls_cloned = num_calls.clone();
async move {
yield_now().await;
*num_calls_cloned.lock().await += 1;
yield_now().await;
Ok(())
}
};
let handler = DeduplicatingHandler::default();
let (first, second) = join!(handler.run(0, inner()), handler.run(1, inner()));
assert!(first.is_ok());
assert!(second.is_ok());
assert_eq!(*num_calls.lock().await, 2);
Ok(())
}
#[async_test]
async fn test_deduplicating_handler_failure() -> anyhow::Result<()> {
let num_calls = Arc::new(Mutex::new(0));
let inner = || {
let num_calls_cloned = num_calls.clone();
async move {
yield_now().await;
*num_calls_cloned.lock().await += 1;
yield_now().await;
Err(crate::Error::AuthenticationRequired)
}
};
let handler = DeduplicatingHandler::default();
let (first, second) = join!(handler.run(0, inner()), handler.run(0, inner()));
assert!(first.is_err());
assert!(second.is_err());
assert_eq!(*num_calls.lock().await, 1);
// Then we can still do subsequent requests that may succeed (or fail), for the
// same key.
let inner = || {
let num_calls_cloned = num_calls.clone();
async move {
*num_calls_cloned.lock().await += 1;
Ok(())
}
};
*num_calls.lock().await = 0;
handler.run(0, inner()).await?;
assert_eq!(*num_calls.lock().await, 1);
Ok(())
}
#[async_test]
async fn test_cancelling_deduplicated_query() -> anyhow::Result<()> {
// A mutex used to prevent progress in the `inner` function.
let allow_progress = Arc::new(Mutex::new(()));
// Number of calls up to the `allow_progress` lock taking.
let num_before = Arc::new(Mutex::new(0));
// Number of calls after the `allow_progress` lock taking.
let num_after = Arc::new(Mutex::new(0));
let inner = || {
let num_before = num_before.clone();
let num_after = num_after.clone();
let allow_progress = allow_progress.clone();
async move {
*num_before.lock().await += 1;
let _ = allow_progress.lock().await;
*num_after.lock().await += 1;
Ok(())
}
};
let handler = Arc::new(DeduplicatingHandler::default());
// First, take the lock so that the `inner` can't complete.
let progress_guard = allow_progress.lock().await;
// Then, spawn deduplicated tasks.
let first = spawn({
let handler = handler.clone();
let query = inner();
async move { handler.run(0, query).await }
});
let second = spawn({
let handler = handler.clone();
let query = inner();
async move { handler.run(0, query).await }
});
// At this point, only the "before" count has been incremented, and only once
// (per the deduplication contract).
yield_now().await;
assert_eq!(*num_before.lock().await, 1);
assert_eq!(*num_after.lock().await, 0);
// Cancel the first task.
first.abort();
assert!(first.await.unwrap_err().is_cancelled());
// The second task restarts the whole query from the beginning.
yield_now().await;
assert_eq!(*num_before.lock().await, 2);
assert_eq!(*num_after.lock().await, 0);
// Release the progress lock; the second query can now finish.
drop(progress_guard);
assert!(second.await.unwrap().is_ok());
// We should've reached completion once.
assert_eq!(*num_before.lock().await, 2);
assert_eq!(*num_after.lock().await, 1);
Ok(())
}
}