matrix_sdk/
deduplicating_handler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright 2023 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Facilities to deduplicate similar queries running at the same time.
//!
//! See [`DeduplicatingHandler`].

use std::{collections::BTreeMap, sync::Arc};

use futures_core::Future;
use matrix_sdk_common::SendOutsideWasm;
use tokio::sync::Mutex;

use crate::{Error, Result};

/// State machine for the state of a query deduplicated by the
/// [`DeduplicatingHandler`].
enum QueryState {
    /// The query hasn't completed. This doesn't mean it hasn't *started* yet,
    /// but rather that it couldn't get to completion: some intermediate
    /// steps might have run.
    Cancelled,
    /// The query has completed with an `Ok` result.
    Success,
    /// The query has completed with an `Err` result.
    Failure,
}

type DeduplicatedRequestMap<Key> = Mutex<BTreeMap<Key, Arc<Mutex<QueryState>>>>;

/// Handler that properly deduplicates function calls given a key uniquely
/// identifying the call kind, and will properly report error upwards in case
/// the concurrent call failed.
///
/// This is handy for deduplicating per-room requests, but can also be used in
/// other contexts.
pub(crate) struct DeduplicatingHandler<Key> {
    /// Map of outstanding function calls, grouped by key.
    inflight: DeduplicatedRequestMap<Key>,
}

impl<Key> Default for DeduplicatingHandler<Key> {
    fn default() -> Self {
        Self { inflight: Default::default() }
    }
}

impl<Key: Clone + Ord + std::hash::Hash> DeduplicatingHandler<Key> {
    /// Runs the given code if and only if there wasn't a similar query running
    /// for the same key.
    ///
    /// Note: the `code` may be run multiple times, if the first query to run it
    /// has been aborted by the caller (i.e. the future has been dropped).
    /// As a consequence, it's important that the `code` future be
    /// idempotent.
    ///
    /// See also [`DeduplicatingHandler`] for more details.
    pub async fn run<'a, F: Future<Output = Result<()>> + SendOutsideWasm + 'a>(
        &self,
        key: Key,
        code: F,
    ) -> Result<()> {
        let mut map = self.inflight.lock().await;

        if let Some(request_mutex) = map.get(&key).cloned() {
            // If a request is already going on, await the release of the lock.
            drop(map);

            let mut request_guard = request_mutex.lock().await;

            return match *request_guard {
                QueryState::Success => {
                    // The query completed with a success: forward this success.
                    Ok(())
                }

                QueryState::Failure => {
                    // The query completed with an error, but we don't know what it is; report
                    // there was an error.
                    Err(Error::ConcurrentRequestFailed)
                }

                QueryState::Cancelled => {
                    // If we could take a hold onto the mutex without it being in the success or
                    // failure state, then the query hasn't completed (e.g. it could have been
                    // cancelled). Repeat it.
                    //
                    // Note: there might be other waiters for the deduplicated result; they will
                    // still be waiting for the mutex above, since the mutex is obtained for at
                    // most one holder at the same time.
                    self.run_code(key, code, &mut request_guard).await
                }
            };
        }

        // Let's assume the cancelled state, if we succeed or fail we'll modify the
        // result.
        let request_mutex = Arc::new(Mutex::new(QueryState::Cancelled));

        map.insert(key.clone(), request_mutex.clone());

        let mut request_guard = request_mutex.lock().await;
        drop(map);

        self.run_code(key, code, &mut request_guard).await
    }

    async fn run_code<'a, F: Future<Output = Result<()>> + SendOutsideWasm + 'a>(
        &self,
        key: Key,
        code: F,
        result: &mut QueryState,
    ) -> Result<()> {
        match code.await {
            Ok(()) => {
                // Mark the request as completed.
                *result = QueryState::Success;

                self.inflight.lock().await.remove(&key);

                Ok(())
            }

            Err(err) => {
                // Propagate the error state to other callers.
                *result = QueryState::Failure;

                // Remove the request from the in-flights set.
                self.inflight.lock().await.remove(&key);

                // Bubble up the error.
                Err(err)
            }
        }
    }
}

// Sorry wasm32, you don't have tokio::join :(
#[cfg(all(test, not(target_arch = "wasm32")))]
mod tests {
    use std::sync::Arc;

    use matrix_sdk_test::async_test;
    use tokio::{join, spawn, sync::Mutex, task::yield_now};

    use crate::deduplicating_handler::DeduplicatingHandler;

    #[async_test]
    async fn test_deduplicating_handler_same_key() -> anyhow::Result<()> {
        let num_calls = Arc::new(Mutex::new(0));

        let inner = || {
            let num_calls_cloned = num_calls.clone();
            async move {
                yield_now().await;
                *num_calls_cloned.lock().await += 1;
                yield_now().await;
                Ok(())
            }
        };

        let handler = DeduplicatingHandler::default();

        let (first, second) = join!(handler.run(0, inner()), handler.run(0, inner()));

        assert!(first.is_ok());
        assert!(second.is_ok());
        assert_eq!(*num_calls.lock().await, 1);

        Ok(())
    }

    #[async_test]
    async fn test_deduplicating_handler_different_keys() -> anyhow::Result<()> {
        let num_calls = Arc::new(Mutex::new(0));

        let inner = || {
            let num_calls_cloned = num_calls.clone();
            async move {
                yield_now().await;
                *num_calls_cloned.lock().await += 1;
                yield_now().await;
                Ok(())
            }
        };

        let handler = DeduplicatingHandler::default();

        let (first, second) = join!(handler.run(0, inner()), handler.run(1, inner()));

        assert!(first.is_ok());
        assert!(second.is_ok());
        assert_eq!(*num_calls.lock().await, 2);

        Ok(())
    }

    #[async_test]
    async fn test_deduplicating_handler_failure() -> anyhow::Result<()> {
        let num_calls = Arc::new(Mutex::new(0));

        let inner = || {
            let num_calls_cloned = num_calls.clone();
            async move {
                yield_now().await;
                *num_calls_cloned.lock().await += 1;
                yield_now().await;
                Err(crate::Error::AuthenticationRequired)
            }
        };

        let handler = DeduplicatingHandler::default();

        let (first, second) = join!(handler.run(0, inner()), handler.run(0, inner()));

        assert!(first.is_err());
        assert!(second.is_err());
        assert_eq!(*num_calls.lock().await, 1);

        // Then we can still do subsequent requests that may succeed (or fail), for the
        // same key.
        let inner = || {
            let num_calls_cloned = num_calls.clone();
            async move {
                *num_calls_cloned.lock().await += 1;
                Ok(())
            }
        };

        *num_calls.lock().await = 0;
        handler.run(0, inner()).await?;
        assert_eq!(*num_calls.lock().await, 1);

        Ok(())
    }

    #[async_test]
    async fn test_cancelling_deduplicated_query() -> anyhow::Result<()> {
        // A mutex used to prevent progress in the `inner` function.
        let allow_progress = Arc::new(Mutex::new(()));

        // Number of calls up to the `allow_progress` lock taking.
        let num_before = Arc::new(Mutex::new(0));
        // Number of calls after the `allow_progress` lock taking.
        let num_after = Arc::new(Mutex::new(0));

        let inner = || {
            let num_before = num_before.clone();
            let num_after = num_after.clone();
            let allow_progress = allow_progress.clone();

            async move {
                *num_before.lock().await += 1;
                let _ = allow_progress.lock().await;
                *num_after.lock().await += 1;
                Ok(())
            }
        };

        let handler = Arc::new(DeduplicatingHandler::default());

        // First, take the lock so that the `inner` can't complete.
        let progress_guard = allow_progress.lock().await;

        // Then, spawn deduplicated tasks.
        let first = spawn({
            let handler = handler.clone();
            let query = inner();
            async move { handler.run(0, query).await }
        });

        let second = spawn({
            let handler = handler.clone();
            let query = inner();
            async move { handler.run(0, query).await }
        });

        // At this point, only the "before" count has been incremented, and only once
        // (per the deduplication contract).
        yield_now().await;

        assert_eq!(*num_before.lock().await, 1);
        assert_eq!(*num_after.lock().await, 0);

        // Cancel the first task.
        first.abort();
        assert!(first.await.unwrap_err().is_cancelled());

        // The second task restarts the whole query from the beginning.
        yield_now().await;

        assert_eq!(*num_before.lock().await, 2);
        assert_eq!(*num_after.lock().await, 0);

        // Release the progress lock; the second query can now finish.
        drop(progress_guard);

        assert!(second.await.unwrap().is_ok());

        // We should've reached completion once.
        assert_eq!(*num_before.lock().await, 2);
        assert_eq!(*num_after.lock().await, 1);

        Ok(())
    }
}