matrix_sdk_common/
failures_cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2023 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A TTL cache which can be used to time out repeated operations that might
//! experience intermittent failures.

use std::{
    borrow::Borrow,
    collections::HashMap,
    hash::Hash,
    sync::{Arc, RwLock},
    time::Duration,
};

use ruma::time::Instant;

const MAX_DELAY: u64 = 15 * 60;
const MULTIPLIER: u64 = 15;

/// A TTL cache where items get inactive instead of discarded.
///
/// The items need to be explicitly removed from the cache. This allows us to
/// implement exponential backoff based TTL.
#[derive(Clone, Debug)]
pub struct FailuresCache<T: Eq + Hash> {
    inner: Arc<InnerCache<T>>,
}

#[derive(Debug)]
struct InnerCache<T: Eq + Hash> {
    max_delay: Duration,
    backoff_multiplier: u64,
    items: RwLock<HashMap<T, FailuresItem>>,
}

impl<T: Eq + Hash> Default for InnerCache<T> {
    fn default() -> Self {
        Self {
            max_delay: Duration::from_secs(MAX_DELAY),
            backoff_multiplier: MULTIPLIER,
            items: Default::default(),
        }
    }
}

#[derive(Debug, Clone, Copy)]
struct FailuresItem {
    insertion_time: Instant,
    duration: Duration,

    /// Number of times that this item has failed after it was first added to
    /// the cache. (In other words, one less than the total number of
    /// failures.)
    failure_count: u8,
}

impl FailuresItem {
    /// Has the item expired.
    fn expired(&self) -> bool {
        self.insertion_time.elapsed() >= self.duration
    }

    /// Force the expiry of this item.
    ///
    /// This doesn't reset the failure count, but does mark the item as ready
    /// for immediate retry.
    fn expire(&mut self) {
        self.duration = Duration::from_secs(0);
    }
}

impl<T> FailuresCache<T>
where
    T: Eq + Hash,
{
    pub fn new() -> Self {
        Self { inner: Default::default() }
    }

    pub fn with_settings(max_delay: Duration, multiplier: u8) -> Self {
        Self {
            inner: InnerCache {
                max_delay,
                backoff_multiplier: multiplier.into(),
                items: Default::default(),
            }
            .into(),
        }
    }

    /// Is the given key non-expired and part of the cache.
    pub fn contains<Q>(&self, key: &Q) -> bool
    where
        T: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        let lock = self.inner.items.read().unwrap();

        let contains = if let Some(item) = lock.get(key) { !item.expired() } else { false };

        contains
    }

    /// Get the failure count for a given key.
    ///
    /// # Returns
    ///
    ///  * `None` if this key is not in the failure cache. (It has never failed,
    ///    or it has been [`FailuresCache::remove()`]d since the last failure.)
    ///
    ///  * `Some(u8)`: the number of times it has failed since it was first
    ///    added to the failure cache. (In other words, one less than the total
    ///    number of failures.)
    pub fn failure_count<Q>(&self, key: &Q) -> Option<u8>
    where
        T: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        let lock = self.inner.items.read().unwrap();
        lock.get(key).map(|i| i.failure_count)
    }

    /// This will calculate a duration that determines how long an item is
    /// considered to be valid while being in the cache.
    ///
    /// The returned duration will follow this sequence if the default
    /// multiplier and `max_delay` values are used, values are in minutes:
    ///      [0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 15.0]
    fn calculate_delay(&self, failure_count: u8) -> Duration {
        let exponential_backoff = 2u64.saturating_pow(failure_count.into());
        let delay = exponential_backoff.saturating_mul(self.inner.backoff_multiplier);

        Duration::from_secs(delay).clamp(Duration::from_secs(1), self.inner.max_delay)
    }

    /// Add a single item to the cache.
    pub fn insert(&self, item: T) {
        self.extend([item]);
    }

    /// Extend the cache with the given iterator of items.
    ///
    /// Items that are already part of the cache, whether they are expired or
    /// not, will have their TTL extended using an exponential backoff
    /// algorithm.
    pub fn extend(&self, iterator: impl IntoIterator<Item = T>) {
        let mut lock = self.inner.items.write().unwrap();

        let now = Instant::now();

        for key in iterator {
            let failure_count = if let Some(value) = lock.get(&key) {
                value.failure_count.saturating_add(1)
            } else {
                0
            };

            let delay = self.calculate_delay(failure_count);

            let item = FailuresItem { insertion_time: now, duration: delay, failure_count };

            lock.insert(key, item);
        }
    }

    /// Remove the items contained in the iterator from the cache.
    pub fn remove<'a, I, Q>(&'a self, iterator: I)
    where
        I: Iterator<Item = &'a Q>,
        T: Borrow<Q>,
        Q: Hash + Eq + 'a + ?Sized,
    {
        let mut lock = self.inner.items.write().unwrap();

        for item in iterator {
            lock.remove(item);
        }
    }

    /// Force the expiry of the given item, if it is present in the cache.
    ///
    /// This doesn't reset the failure count, but does mark the item as ready
    /// for immediate retry.
    #[doc(hidden)]
    pub fn expire(&self, item: &T) {
        let mut lock = self.inner.items.write().unwrap();
        lock.get_mut(item).map(FailuresItem::expire);
    }
}

impl<T: Eq + Hash> Default for FailuresCache<T> {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod tests {
    use std::time::Duration;

    use proptest::prelude::*;

    use super::FailuresCache;

    #[test]
    fn failures_cache() {
        let cache = FailuresCache::new();

        assert!(!cache.contains(&1));
        cache.extend([1u8].iter());
        assert!(cache.contains(&1));

        cache.inner.items.write().unwrap().get_mut(&1).unwrap().duration = Duration::from_secs(0);
        assert!(!cache.contains(&1));

        cache.remove([1u8].iter());
        assert!(cache.inner.items.read().unwrap().get(&1).is_none())
    }

    #[test]
    fn failures_cache_timeout() {
        let cache: FailuresCache<u8> = FailuresCache::new();

        assert_eq!(cache.calculate_delay(0).as_secs(), 15);
        assert_eq!(cache.calculate_delay(1).as_secs(), 30);
        assert_eq!(cache.calculate_delay(2).as_secs(), 60);
        assert_eq!(cache.calculate_delay(3).as_secs(), 120);
        assert_eq!(cache.calculate_delay(4).as_secs(), 240);
        assert_eq!(cache.calculate_delay(5).as_secs(), 480);
        assert_eq!(cache.calculate_delay(6).as_secs(), 900);
        assert_eq!(cache.calculate_delay(7).as_secs(), 900);
    }

    proptest! {
        #[test]
        fn failures_cache_proptest_timeout(count in 0..10u8) {
            let cache: FailuresCache<u8> = FailuresCache::new();
            let delay = cache.calculate_delay(count).as_secs();

            assert!(delay <= 900);
            assert!(delay >= 15);
        }
    }
}