matrix_sdk_common/linked_chunk/updates.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{
collections::HashMap,
pin::Pin,
sync::{Arc, RwLock, Weak},
task::{Context, Poll, Waker},
};
use futures_core::Stream;
use super::{ChunkIdentifier, Position};
/// Represent the updates that have happened inside a [`LinkedChunk`].
///
/// To retrieve the updates, use [`LinkedChunk::updates`].
///
/// These updates are useful to store a `LinkedChunk` in another form of
/// storage, like a database or something similar.
///
/// [`LinkedChunk`]: super::LinkedChunk
/// [`LinkedChunk::updates`]: super::LinkedChunk::updates
#[derive(Debug, Clone, PartialEq)]
pub enum Update<Item, Gap> {
/// A new chunk of kind Items has been created.
NewItemsChunk {
/// The identifier of the previous chunk of this new chunk.
previous: Option<ChunkIdentifier>,
/// The identifier of the new chunk.
new: ChunkIdentifier,
/// The identifier of the next chunk of this new chunk.
next: Option<ChunkIdentifier>,
},
/// A new chunk of kind Gap has been created.
NewGapChunk {
/// The identifier of the previous chunk of this new chunk.
previous: Option<ChunkIdentifier>,
/// The identifier of the new chunk.
new: ChunkIdentifier,
/// The identifier of the next chunk of this new chunk.
next: Option<ChunkIdentifier>,
/// The content of the chunk.
gap: Gap,
},
/// A chunk has been removed.
RemoveChunk(ChunkIdentifier),
/// Items are pushed inside a chunk of kind Items.
PushItems {
/// The [`Position`] of the items.
///
/// This value is given to prevent the need for position computations by
/// the update readers. Items are pushed, so the positions should be
/// incrementally computed from the previous items, which requires the
/// reading of the last previous item. With `at`, the update readers no
/// longer need to do so.
at: Position,
/// The items.
items: Vec<Item>,
},
/// An item has been removed inside a chunk of kind Items.
RemoveItem {
/// The [`Position`] of the item.
at: Position,
},
/// The last items of a chunk have been detached, i.e. the chunk has been
/// truncated.
DetachLastItems {
/// The split position. Before this position (`..position`), items are
/// kept, from this position (`position..`), items are
/// detached.
at: Position,
},
/// Detached items (see [`Self::DetachLastItems`]) starts being reattached.
StartReattachItems,
/// Reattaching items (see [`Self::StartReattachItems`]) is finished.
EndReattachItems,
/// All chunks have been cleared, i.e. all items and all gaps have been
/// dropped.
Clear,
}
/// A collection of [`Update`]s that can be observed.
///
/// Get a value for this type with [`LinkedChunk::updates`].
///
/// [`LinkedChunk::updates`]: super::LinkedChunk::updates
#[derive(Debug)]
pub struct ObservableUpdates<Item, Gap> {
pub(super) inner: Arc<RwLock<UpdatesInner<Item, Gap>>>,
}
impl<Item, Gap> ObservableUpdates<Item, Gap> {
/// Create a new [`ObservableUpdates`].
pub(super) fn new() -> Self {
Self { inner: Arc::new(RwLock::new(UpdatesInner::new())) }
}
/// Push a new update.
pub(super) fn push(&mut self, update: Update<Item, Gap>) {
self.inner.write().unwrap().push(update);
}
/// Take new updates.
///
/// Updates that have been taken will not be read again.
pub fn take(&mut self) -> Vec<Update<Item, Gap>>
where
Item: Clone,
Gap: Clone,
{
self.inner.write().unwrap().take().to_owned()
}
/// Subscribe to updates by using a [`Stream`].
#[cfg(test)]
pub(super) fn subscribe(&mut self) -> UpdatesSubscriber<Item, Gap> {
// A subscriber is a new update reader, it needs its own token.
let token = self.new_reader_token();
UpdatesSubscriber::new(Arc::downgrade(&self.inner), token)
}
/// Generate a new [`ReaderToken`].
pub(super) fn new_reader_token(&mut self) -> ReaderToken {
let mut inner = self.inner.write().unwrap();
// Add 1 before reading the `last_token`, in this particular order, because the
// 0 token is reserved by `MAIN_READER_TOKEN`.
inner.last_token += 1;
let last_token = inner.last_token;
inner.last_index_per_reader.insert(last_token, 0);
last_token
}
}
/// A token used to represent readers that read the updates in
/// [`UpdatesInner`].
pub(super) type ReaderToken = usize;
/// Inner type for [`ObservableUpdates`].
///
/// The particularity of this type is that multiple readers can read the
/// updates. A reader has a [`ReaderToken`]. The public API (i.e.
/// [`ObservableUpdates`]) is considered to be the _main reader_ (it has the
/// token [`Self::MAIN_READER_TOKEN`]).
///
/// An update that have been read by all readers are garbage collected to be
/// removed from the memory. An update will never be read twice by the same
/// reader.
///
/// Why do we need multiple readers? The public API reads the updates with
/// [`ObservableUpdates::take`], but the private API must also read the updates
/// for example with [`UpdatesSubscriber`]. Of course, they can be multiple
/// `UpdatesSubscriber`s at the same time. Hence the need of supporting multiple
/// readers.
#[derive(Debug)]
pub(super) struct UpdatesInner<Item, Gap> {
/// All the updates that have not been read by all readers.
updates: Vec<Update<Item, Gap>>,
/// Updates are stored in [`Self::updates`]. Multiple readers can read them.
/// A reader is identified by a [`ReaderToken`].
///
/// To each reader token is associated an index that represents the index of
/// the last reading. It is used to never return the same update twice.
last_index_per_reader: HashMap<ReaderToken, usize>,
/// The last generated token. This is useful to generate new token.
last_token: ReaderToken,
/// Pending wakers for [`UpdateSubscriber`]s. A waker is removed
/// everytime it is called.
wakers: Vec<Waker>,
}
impl<Item, Gap> UpdatesInner<Item, Gap> {
/// The token used by the main reader. See [`Self::take`] to learn more.
const MAIN_READER_TOKEN: ReaderToken = 0;
/// Create a new [`Self`].
fn new() -> Self {
Self {
updates: Vec::with_capacity(8),
last_index_per_reader: {
let mut map = HashMap::with_capacity(2);
map.insert(Self::MAIN_READER_TOKEN, 0);
map
},
last_token: Self::MAIN_READER_TOKEN,
wakers: Vec::with_capacity(2),
}
}
/// Push a new update.
fn push(&mut self, update: Update<Item, Gap>) {
self.updates.push(update);
// Wake them up \o/.
for waker in self.wakers.drain(..) {
waker.wake();
}
}
/// Take new updates; it considers the caller is the main reader, i.e. it
/// will use the [`Self::MAIN_READER_TOKEN`].
///
/// Updates that have been read will never be read again by the current
/// reader.
///
/// Learn more by reading [`Self::take_with_token`].
fn take(&mut self) -> &[Update<Item, Gap>] {
self.take_with_token(Self::MAIN_READER_TOKEN)
}
/// Take new updates with a particular reader token.
///
/// Updates are stored in [`Self::updates`]. Multiple readers can read them.
/// A reader is identified by a [`ReaderToken`]. Every reader can
/// take/read/consume each update only once. An internal index is stored
/// per reader token to know where to start reading updates next time this
/// method is called.
pub(super) fn take_with_token(&mut self, token: ReaderToken) -> &[Update<Item, Gap>] {
// Let's garbage collect unused updates.
self.garbage_collect();
let index = self
.last_index_per_reader
.get_mut(&token)
.expect("Given `UpdatesToken` does not map to any index");
// Read new updates, and update the index.
let slice = &self.updates[*index..];
*index = self.updates.len();
slice
}
/// Return the number of updates in the buffer.
#[cfg(test)]
fn len(&self) -> usize {
self.updates.len()
}
/// Garbage collect unused updates. An update is considered unused when it's
/// been read by all readers.
///
/// Basically, it reduces to finding the smallest last index for all
/// readers, and clear from 0 to that index.
fn garbage_collect(&mut self) {
let min_index = self.last_index_per_reader.values().min().copied().unwrap_or(0);
if min_index > 0 {
let _ = self.updates.drain(0..min_index);
// Let's shift the indices to the left by `min_index` to preserve them.
for index in self.last_index_per_reader.values_mut() {
*index -= min_index;
}
}
}
}
/// A subscriber to [`ObservableUpdates`]. It is helpful to receive updates via
/// a [`Stream`].
pub(super) struct UpdatesSubscriber<Item, Gap> {
/// Weak reference to [`UpdatesInner`].
///
/// Using a weak reference allows [`ObservableUpdates`] to be dropped
/// freely even if a subscriber exists.
updates: Weak<RwLock<UpdatesInner<Item, Gap>>>,
/// The token to read the updates.
token: ReaderToken,
}
impl<Item, Gap> UpdatesSubscriber<Item, Gap> {
/// Create a new [`Self`].
#[cfg(test)]
fn new(updates: Weak<RwLock<UpdatesInner<Item, Gap>>>, token: ReaderToken) -> Self {
Self { updates, token }
}
}
impl<Item, Gap> Stream for UpdatesSubscriber<Item, Gap>
where
Item: Clone,
Gap: Clone,
{
type Item = Vec<Update<Item, Gap>>;
fn poll_next(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let Some(updates) = self.updates.upgrade() else {
// The `ObservableUpdates` has been dropped. It's time to close this stream.
return Poll::Ready(None);
};
let mut updates = updates.write().unwrap();
let the_updates = updates.take_with_token(self.token);
// No updates.
if the_updates.is_empty() {
// Let's register the waker.
updates.wakers.push(context.waker().clone());
// The stream is pending.
return Poll::Pending;
}
// There is updates! Let's forward them in this stream.
Poll::Ready(Some(the_updates.to_owned()))
}
}
impl<Item, Gap> Drop for UpdatesSubscriber<Item, Gap> {
fn drop(&mut self) {
// Remove `Self::token` from `UpdatesInner::last_index_per_reader`.
// This is important so that the garbage collector can do its jobs correctly
// without a dead dangling reader token.
if let Some(updates) = self.updates.upgrade() {
let mut updates = updates.write().unwrap();
// Remove the reader token from `UpdatesInner`.
// It's safe to ignore the result of `remove` here: `None` means the token was
// already removed (note: it should be unreachable).
let _ = updates.last_index_per_reader.remove(&self.token);
}
}
}
#[cfg(test)]
mod tests {
use std::{
sync::{Arc, Mutex},
task::{Context, Poll, Wake},
};
use assert_matches::assert_matches;
use futures_util::pin_mut;
use super::{super::LinkedChunk, ChunkIdentifier, Position, Stream, UpdatesInner};
#[test]
fn test_updates_take_and_garbage_collector() {
use super::Update::*;
let mut linked_chunk = LinkedChunk::<10, char, ()>::new_with_update_history();
// Simulate another updates “reader”, it can a subscriber.
let main_token = UpdatesInner::<char, ()>::MAIN_READER_TOKEN;
let other_token = {
let updates = linked_chunk.updates().unwrap();
let mut inner = updates.inner.write().unwrap();
inner.last_token += 1;
let other_token = inner.last_token;
inner.last_index_per_reader.insert(other_token, 0);
other_token
};
// There is an initial update.
{
let updates = linked_chunk.updates().unwrap();
assert_eq!(
updates.take(),
&[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }],
);
assert_eq!(
updates.inner.write().unwrap().take_with_token(other_token),
&[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }],
);
}
// No new update.
{
let updates = linked_chunk.updates().unwrap();
assert!(updates.take().is_empty());
assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());
}
linked_chunk.push_items_back(['a']);
linked_chunk.push_items_back(['b']);
linked_chunk.push_items_back(['c']);
// Scenario 1: “main” takes the new updates, “other” doesn't take the new
// updates.
//
// 0 1 2 3
// +---+---+---+
// | a | b | c |
// +---+---+---+
//
// “main” will move its index from 0 to 3.
// “other” won't move its index.
{
let updates = linked_chunk.updates().unwrap();
{
// Inspect number of updates in memory.
assert_eq!(updates.inner.read().unwrap().len(), 3);
}
assert_eq!(
updates.take(),
&[
PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
]
);
{
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// It must be the same number as before as the garbage collector weren't not
// able to remove any unused updates.
assert_eq!(inner.len(), 3);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&main_token), Some(&3));
assert_eq!(indices.get(&other_token), Some(&0));
}
}
linked_chunk.push_items_back(['d']);
linked_chunk.push_items_back(['e']);
linked_chunk.push_items_back(['f']);
// Scenario 2: “other“ takes the new updates, “main” doesn't take the
// new updates.
//
// 0 1 2 3 4 5 6
// +---+---+---+---+---+---+
// | a | b | c | d | e | f |
// +---+---+---+---+---+---+
//
// “main” won't move its index.
// “other” will move its index from 0 to 6.
{
let updates = linked_chunk.updates().unwrap();
assert_eq!(
updates.inner.write().unwrap().take_with_token(other_token),
&[
PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
PushItems { at: Position(ChunkIdentifier(0), 3), items: vec!['d'] },
PushItems { at: Position(ChunkIdentifier(0), 4), items: vec!['e'] },
PushItems { at: Position(ChunkIdentifier(0), 5), items: vec!['f'] },
]
);
{
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// It must be the same number as before as the garbage collector will be able to
// remove unused updates but at the next call…
assert_eq!(inner.len(), 6);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&main_token), Some(&3));
assert_eq!(indices.get(&other_token), Some(&6));
}
}
// Scenario 3: “other” take new updates, but there is none, “main”
// doesn't take new updates. The garbage collector will run and collect
// unused updates.
//
// 0 1 2 3
// +---+---+---+
// | d | e | f |
// +---+---+---+
//
// “main” will have its index updated from 3 to 0.
// “other” will have its index updated from 6 to 3.
{
let updates = linked_chunk.updates().unwrap();
assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());
{
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// The garbage collector has removed unused updates.
assert_eq!(inner.len(), 3);
// Inspect the indices. They must have been adjusted.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&main_token), Some(&0));
assert_eq!(indices.get(&other_token), Some(&3));
}
}
linked_chunk.push_items_back(['g']);
linked_chunk.push_items_back(['h']);
linked_chunk.push_items_back(['i']);
// Scenario 4: both “main” and “other” take the new updates.
//
// 0 1 2 3 4 5 6
// +---+---+---+---+---+---+
// | d | e | f | g | h | i |
// +---+---+---+---+---+---+
//
// “main” will have its index updated from 0 to 3.
// “other” will have its index updated from 6 to 3.
{
let updates = linked_chunk.updates().unwrap();
assert_eq!(
updates.take(),
&[
PushItems { at: Position(ChunkIdentifier(0), 3), items: vec!['d'] },
PushItems { at: Position(ChunkIdentifier(0), 4), items: vec!['e'] },
PushItems { at: Position(ChunkIdentifier(0), 5), items: vec!['f'] },
PushItems { at: Position(ChunkIdentifier(0), 6), items: vec!['g'] },
PushItems { at: Position(ChunkIdentifier(0), 7), items: vec!['h'] },
PushItems { at: Position(ChunkIdentifier(0), 8), items: vec!['i'] },
]
);
assert_eq!(
updates.inner.write().unwrap().take_with_token(other_token),
&[
PushItems { at: Position(ChunkIdentifier(0), 6), items: vec!['g'] },
PushItems { at: Position(ChunkIdentifier(0), 7), items: vec!['h'] },
PushItems { at: Position(ChunkIdentifier(0), 8), items: vec!['i'] },
]
);
{
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// The garbage collector had a chance to collect the first 3 updates.
assert_eq!(inner.len(), 3);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&main_token), Some(&3));
assert_eq!(indices.get(&other_token), Some(&3));
}
}
// Scenario 5: no more updates but they both try to take new updates.
// The garbage collector will collect all updates as all of them as
// been read already.
//
// “main” will have its index updated from 0 to 0.
// “other” will have its index updated from 3 to 0.
{
let updates = linked_chunk.updates().unwrap();
assert!(updates.take().is_empty());
assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());
{
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// The garbage collector had a chance to collect all updates.
assert_eq!(inner.len(), 0);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&main_token), Some(&0));
assert_eq!(indices.get(&other_token), Some(&0));
}
}
}
struct CounterWaker {
number_of_wakeup: Mutex<usize>,
}
impl Wake for CounterWaker {
fn wake(self: Arc<Self>) {
*self.number_of_wakeup.lock().unwrap() += 1;
}
}
#[test]
fn test_updates_stream() {
use super::Update::*;
let counter_waker = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });
let waker = counter_waker.clone().into();
let mut context = Context::from_waker(&waker);
let mut linked_chunk = LinkedChunk::<3, char, ()>::new_with_update_history();
let updates_subscriber = linked_chunk.updates().unwrap().subscribe();
pin_mut!(updates_subscriber);
// Initial update, stream is ready.
assert_matches!(
updates_subscriber.as_mut().poll_next(&mut context),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
);
}
);
assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);
assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 0);
// Let's generate an update.
linked_chunk.push_items_back(['a']);
// The waker must have been called.
assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 1);
// There is an update! Right after that, the stream is pending again.
assert_matches!(
updates_subscriber.as_mut().poll_next(&mut context),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
);
}
);
assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);
// Let's generate two other updates.
linked_chunk.push_items_back(['b']);
linked_chunk.push_items_back(['c']);
// The waker must have been called only once for the two updates.
assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 2);
// We can consume the updates without the stream, but the stream continues to
// know it has updates.
assert_eq!(
linked_chunk.updates().unwrap().take(),
&[
NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None },
PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
]
);
assert_matches!(
updates_subscriber.as_mut().poll_next(&mut context),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[
PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
]
);
}
);
assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);
// When dropping the `LinkedChunk`, it closes the stream.
drop(linked_chunk);
assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Ready(None));
// Wakers calls have not changed.
assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 2);
}
#[test]
fn test_updates_multiple_streams() {
use super::Update::*;
let counter_waker1 = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });
let counter_waker2 = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });
let waker1 = counter_waker1.clone().into();
let waker2 = counter_waker2.clone().into();
let mut context1 = Context::from_waker(&waker1);
let mut context2 = Context::from_waker(&waker2);
let mut linked_chunk = LinkedChunk::<3, char, ()>::new_with_update_history();
let updates_subscriber1 = linked_chunk.updates().unwrap().subscribe();
pin_mut!(updates_subscriber1);
// Scope for `updates_subscriber2`.
let updates_subscriber2_token = {
let updates_subscriber2 = linked_chunk.updates().unwrap().subscribe();
pin_mut!(updates_subscriber2);
// Initial updates, streams are ready.
assert_matches!(
updates_subscriber1.as_mut().poll_next(&mut context1),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
);
}
);
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 0);
assert_matches!(
updates_subscriber2.as_mut().poll_next(&mut context2),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
);
}
);
assert_matches!(updates_subscriber2.as_mut().poll_next(&mut context2), Poll::Pending);
assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 0);
// Let's generate an update.
linked_chunk.push_items_back(['a']);
// The wakers must have been called.
assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 1);
assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 1);
// There is an update! Right after that, the streams are pending again.
assert_matches!(
updates_subscriber1.as_mut().poll_next(&mut context1),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
);
}
);
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
assert_matches!(
updates_subscriber2.as_mut().poll_next(&mut context2),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
);
}
);
assert_matches!(updates_subscriber2.as_mut().poll_next(&mut context2), Poll::Pending);
// Let's generate two other updates.
linked_chunk.push_items_back(['b']);
linked_chunk.push_items_back(['c']);
// A waker is consumed when called. The first call to `push_items_back` will
// call and consume the wakers. The second call to `push_items_back` will do
// nothing as the wakers have been consumed. New wakers will be registered on
// polling.
//
// So, the waker must have been called only once for the two updates.
assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 2);
assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 2);
// Let's poll `updates_subscriber1` only.
assert_matches!(
updates_subscriber1.as_mut().poll_next(&mut context1),
Poll::Ready(Some(items)) => {
assert_eq!(
items,
&[
PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
]
);
}
);
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
// For the sake of this test, we also need to advance the main reader token.
let _ = linked_chunk.updates().unwrap().take();
let _ = linked_chunk.updates().unwrap().take();
// If we inspect the garbage collector state, `a`, `b` and `c` should still be
// present because not all of them have been consumed by `updates_subscriber2`
// yet.
{
let updates = linked_chunk.updates().unwrap();
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
// We get 2 because the garbage collector runs before data are taken, not after:
// `updates_subscriber2` has read `a` only, so `b` and `c` remain.
assert_eq!(inner.len(), 2);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&updates_subscriber1.token), Some(&2));
assert_eq!(indices.get(&updates_subscriber2.token), Some(&0));
}
// Poll `updates_subscriber1` again: there is no new update so it must be
// pending.
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
// The state of the garbage collector is unchanged: `a`, `b` and `c` are still
// in memory.
{
let updates = linked_chunk.updates().unwrap();
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory. Value is unchanged.
assert_eq!(inner.len(), 2);
// Inspect the indices. They are unchanged.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&updates_subscriber1.token), Some(&2));
assert_eq!(indices.get(&updates_subscriber2.token), Some(&0));
}
updates_subscriber2.token
// Drop `updates_subscriber2`!
};
// `updates_subscriber2` has been dropped. Poll `updates_subscriber1` again:
// still no new update, but it will run the garbage collector again, and this
// time `updates_subscriber2` is not “retaining” `b` and `c`. The garbage
// collector must be empty.
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
// Inspect the garbage collector.
{
let updates = linked_chunk.updates().unwrap();
let inner = updates.inner.read().unwrap();
// Inspect number of updates in memory.
assert_eq!(inner.len(), 0);
// Inspect the indices.
let indices = &inner.last_index_per_reader;
assert_eq!(indices.get(&updates_subscriber1.token), Some(&0));
assert_eq!(indices.get(&updates_subscriber2_token), None); // token is unknown!
}
// When dropping the `LinkedChunk`, it closes the stream.
drop(linked_chunk);
assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Ready(None));
}
}