matrix_sdk_common/linked_chunk/
updates.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{
    collections::HashMap,
    pin::Pin,
    sync::{Arc, RwLock, Weak},
    task::{Context, Poll, Waker},
};

use futures_core::Stream;

use super::{ChunkIdentifier, Position};

/// Represent the updates that have happened inside a [`LinkedChunk`].
///
/// To retrieve the updates, use [`LinkedChunk::updates`].
///
/// These updates are useful to store a `LinkedChunk` in another form of
/// storage, like a database or something similar.
///
/// [`LinkedChunk`]: super::LinkedChunk
/// [`LinkedChunk::updates`]: super::LinkedChunk::updates
#[derive(Debug, Clone, PartialEq)]
pub enum Update<Item, Gap> {
    /// A new chunk of kind Items has been created.
    NewItemsChunk {
        /// The identifier of the previous chunk of this new chunk.
        previous: Option<ChunkIdentifier>,

        /// The identifier of the new chunk.
        new: ChunkIdentifier,

        /// The identifier of the next chunk of this new chunk.
        next: Option<ChunkIdentifier>,
    },

    /// A new chunk of kind Gap has been created.
    NewGapChunk {
        /// The identifier of the previous chunk of this new chunk.
        previous: Option<ChunkIdentifier>,

        /// The identifier of the new chunk.
        new: ChunkIdentifier,

        /// The identifier of the next chunk of this new chunk.
        next: Option<ChunkIdentifier>,

        /// The content of the chunk.
        gap: Gap,
    },

    /// A chunk has been removed.
    RemoveChunk(ChunkIdentifier),

    /// Items are pushed inside a chunk of kind Items.
    PushItems {
        /// The [`Position`] of the items.
        ///
        /// This value is given to prevent the need for position computations by
        /// the update readers. Items are pushed, so the positions should be
        /// incrementally computed from the previous items, which requires the
        /// reading of the last previous item. With `at`, the update readers no
        /// longer need to do so.
        at: Position,

        /// The items.
        items: Vec<Item>,
    },

    /// An item has been removed inside a chunk of kind Items.
    RemoveItem {
        /// The [`Position`] of the item.
        at: Position,
    },

    /// The last items of a chunk have been detached, i.e. the chunk has been
    /// truncated.
    DetachLastItems {
        /// The split position. Before this position (`..position`), items are
        /// kept, from this position (`position..`), items are
        /// detached.
        at: Position,
    },

    /// Detached items (see [`Self::DetachLastItems`]) starts being reattached.
    StartReattachItems,

    /// Reattaching items (see [`Self::StartReattachItems`]) is finished.
    EndReattachItems,

    /// All chunks have been cleared, i.e. all items and all gaps have been
    /// dropped.
    Clear,
}

/// A collection of [`Update`]s that can be observed.
///
/// Get a value for this type with [`LinkedChunk::updates`].
///
/// [`LinkedChunk::updates`]: super::LinkedChunk::updates
#[derive(Debug)]
pub struct ObservableUpdates<Item, Gap> {
    pub(super) inner: Arc<RwLock<UpdatesInner<Item, Gap>>>,
}

impl<Item, Gap> ObservableUpdates<Item, Gap> {
    /// Create a new [`ObservableUpdates`].
    pub(super) fn new() -> Self {
        Self { inner: Arc::new(RwLock::new(UpdatesInner::new())) }
    }

    /// Push a new update.
    pub(super) fn push(&mut self, update: Update<Item, Gap>) {
        self.inner.write().unwrap().push(update);
    }

    /// Take new updates.
    ///
    /// Updates that have been taken will not be read again.
    pub fn take(&mut self) -> Vec<Update<Item, Gap>>
    where
        Item: Clone,
        Gap: Clone,
    {
        self.inner.write().unwrap().take().to_owned()
    }

    /// Subscribe to updates by using a [`Stream`].
    #[cfg(test)]
    pub(super) fn subscribe(&mut self) -> UpdatesSubscriber<Item, Gap> {
        // A subscriber is a new update reader, it needs its own token.
        let token = self.new_reader_token();

        UpdatesSubscriber::new(Arc::downgrade(&self.inner), token)
    }

    /// Generate a new [`ReaderToken`].
    pub(super) fn new_reader_token(&mut self) -> ReaderToken {
        let mut inner = self.inner.write().unwrap();

        // Add 1 before reading the `last_token`, in this particular order, because the
        // 0 token is reserved by `MAIN_READER_TOKEN`.
        inner.last_token += 1;
        let last_token = inner.last_token;

        inner.last_index_per_reader.insert(last_token, 0);

        last_token
    }
}

/// A token used to represent readers that read the updates in
/// [`UpdatesInner`].
pub(super) type ReaderToken = usize;

/// Inner type for [`ObservableUpdates`].
///
/// The particularity of this type is that multiple readers can read the
/// updates. A reader has a [`ReaderToken`]. The public API (i.e.
/// [`ObservableUpdates`]) is considered to be the _main reader_ (it has the
/// token [`Self::MAIN_READER_TOKEN`]).
///
/// An update that have been read by all readers are garbage collected to be
/// removed from the memory. An update will never be read twice by the same
/// reader.
///
/// Why do we need multiple readers? The public API reads the updates with
/// [`ObservableUpdates::take`], but the private API must also read the updates
/// for example with [`UpdatesSubscriber`]. Of course, they can be multiple
/// `UpdatesSubscriber`s at the same time. Hence the need of supporting multiple
/// readers.
#[derive(Debug)]
pub(super) struct UpdatesInner<Item, Gap> {
    /// All the updates that have not been read by all readers.
    updates: Vec<Update<Item, Gap>>,

    /// Updates are stored in [`Self::updates`]. Multiple readers can read them.
    /// A reader is identified by a [`ReaderToken`].
    ///
    /// To each reader token is associated an index that represents the index of
    /// the last reading. It is used to never return the same update twice.
    last_index_per_reader: HashMap<ReaderToken, usize>,

    /// The last generated token. This is useful to generate new token.
    last_token: ReaderToken,

    /// Pending wakers for [`UpdateSubscriber`]s. A waker is removed
    /// everytime it is called.
    wakers: Vec<Waker>,
}

impl<Item, Gap> UpdatesInner<Item, Gap> {
    /// The token used by the main reader. See [`Self::take`] to learn more.
    const MAIN_READER_TOKEN: ReaderToken = 0;

    /// Create a new [`Self`].
    fn new() -> Self {
        Self {
            updates: Vec::with_capacity(8),
            last_index_per_reader: {
                let mut map = HashMap::with_capacity(2);
                map.insert(Self::MAIN_READER_TOKEN, 0);

                map
            },
            last_token: Self::MAIN_READER_TOKEN,
            wakers: Vec::with_capacity(2),
        }
    }

    /// Push a new update.
    fn push(&mut self, update: Update<Item, Gap>) {
        self.updates.push(update);

        // Wake them up \o/.
        for waker in self.wakers.drain(..) {
            waker.wake();
        }
    }

    /// Take new updates; it considers the caller is the main reader, i.e. it
    /// will use the [`Self::MAIN_READER_TOKEN`].
    ///
    /// Updates that have been read will never be read again by the current
    /// reader.
    ///
    /// Learn more by reading [`Self::take_with_token`].
    fn take(&mut self) -> &[Update<Item, Gap>] {
        self.take_with_token(Self::MAIN_READER_TOKEN)
    }

    /// Take new updates with a particular reader token.
    ///
    /// Updates are stored in [`Self::updates`]. Multiple readers can read them.
    /// A reader is identified by a [`ReaderToken`]. Every reader can
    /// take/read/consume each update only once. An internal index is stored
    /// per reader token to know where to start reading updates next time this
    /// method is called.
    pub(super) fn take_with_token(&mut self, token: ReaderToken) -> &[Update<Item, Gap>] {
        // Let's garbage collect unused updates.
        self.garbage_collect();

        let index = self
            .last_index_per_reader
            .get_mut(&token)
            .expect("Given `UpdatesToken` does not map to any index");

        // Read new updates, and update the index.
        let slice = &self.updates[*index..];
        *index = self.updates.len();

        slice
    }

    /// Return the number of updates in the buffer.
    #[cfg(test)]
    fn len(&self) -> usize {
        self.updates.len()
    }

    /// Garbage collect unused updates. An update is considered unused when it's
    /// been read by all readers.
    ///
    /// Basically, it reduces to finding the smallest last index for all
    /// readers, and clear from 0 to that index.
    fn garbage_collect(&mut self) {
        let min_index = self.last_index_per_reader.values().min().copied().unwrap_or(0);

        if min_index > 0 {
            let _ = self.updates.drain(0..min_index);

            // Let's shift the indices to the left by `min_index` to preserve them.
            for index in self.last_index_per_reader.values_mut() {
                *index -= min_index;
            }
        }
    }
}

/// A subscriber to [`ObservableUpdates`]. It is helpful to receive updates via
/// a [`Stream`].
pub(super) struct UpdatesSubscriber<Item, Gap> {
    /// Weak reference to [`UpdatesInner`].
    ///
    /// Using a weak reference allows [`ObservableUpdates`] to be dropped
    /// freely even if a subscriber exists.
    updates: Weak<RwLock<UpdatesInner<Item, Gap>>>,

    /// The token to read the updates.
    token: ReaderToken,
}

impl<Item, Gap> UpdatesSubscriber<Item, Gap> {
    /// Create a new [`Self`].
    #[cfg(test)]
    fn new(updates: Weak<RwLock<UpdatesInner<Item, Gap>>>, token: ReaderToken) -> Self {
        Self { updates, token }
    }
}

impl<Item, Gap> Stream for UpdatesSubscriber<Item, Gap>
where
    Item: Clone,
    Gap: Clone,
{
    type Item = Vec<Update<Item, Gap>>;

    fn poll_next(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let Some(updates) = self.updates.upgrade() else {
            // The `ObservableUpdates` has been dropped. It's time to close this stream.
            return Poll::Ready(None);
        };

        let mut updates = updates.write().unwrap();
        let the_updates = updates.take_with_token(self.token);

        // No updates.
        if the_updates.is_empty() {
            // Let's register the waker.
            updates.wakers.push(context.waker().clone());

            // The stream is pending.
            return Poll::Pending;
        }

        // There is updates! Let's forward them in this stream.
        Poll::Ready(Some(the_updates.to_owned()))
    }
}

impl<Item, Gap> Drop for UpdatesSubscriber<Item, Gap> {
    fn drop(&mut self) {
        // Remove `Self::token` from `UpdatesInner::last_index_per_reader`.
        // This is important so that the garbage collector can do its jobs correctly
        // without a dead dangling reader token.
        if let Some(updates) = self.updates.upgrade() {
            let mut updates = updates.write().unwrap();

            // Remove the reader token from `UpdatesInner`.
            // It's safe to ignore the result of `remove` here: `None` means the token was
            // already removed (note: it should be unreachable).
            let _ = updates.last_index_per_reader.remove(&self.token);
        }
    }
}

#[cfg(test)]
mod tests {
    use std::{
        sync::{Arc, Mutex},
        task::{Context, Poll, Wake},
    };

    use assert_matches::assert_matches;
    use futures_util::pin_mut;

    use super::{super::LinkedChunk, ChunkIdentifier, Position, Stream, UpdatesInner};

    #[test]
    fn test_updates_take_and_garbage_collector() {
        use super::Update::*;

        let mut linked_chunk = LinkedChunk::<10, char, ()>::new_with_update_history();

        // Simulate another updates “reader”, it can a subscriber.
        let main_token = UpdatesInner::<char, ()>::MAIN_READER_TOKEN;
        let other_token = {
            let updates = linked_chunk.updates().unwrap();
            let mut inner = updates.inner.write().unwrap();
            inner.last_token += 1;

            let other_token = inner.last_token;
            inner.last_index_per_reader.insert(other_token, 0);

            other_token
        };

        // There is an initial update.
        {
            let updates = linked_chunk.updates().unwrap();

            assert_eq!(
                updates.take(),
                &[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }],
            );
            assert_eq!(
                updates.inner.write().unwrap().take_with_token(other_token),
                &[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }],
            );
        }

        // No new update.
        {
            let updates = linked_chunk.updates().unwrap();

            assert!(updates.take().is_empty());
            assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());
        }

        linked_chunk.push_items_back(['a']);
        linked_chunk.push_items_back(['b']);
        linked_chunk.push_items_back(['c']);

        // Scenario 1: “main” takes the new updates, “other” doesn't take the new
        // updates.
        //
        // 0   1   2   3
        // +---+---+---+
        // | a | b | c |
        // +---+---+---+
        //
        // “main” will move its index from 0 to 3.
        // “other” won't move its index.
        {
            let updates = linked_chunk.updates().unwrap();

            {
                // Inspect number of updates in memory.
                assert_eq!(updates.inner.read().unwrap().len(), 3);
            }

            assert_eq!(
                updates.take(),
                &[
                    PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
                    PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
                    PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
                ]
            );

            {
                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // It must be the same number as before as the garbage collector weren't not
                // able to remove any unused updates.
                assert_eq!(inner.len(), 3);

                // Inspect the indices.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&main_token), Some(&3));
                assert_eq!(indices.get(&other_token), Some(&0));
            }
        }

        linked_chunk.push_items_back(['d']);
        linked_chunk.push_items_back(['e']);
        linked_chunk.push_items_back(['f']);

        // Scenario 2: “other“ takes the new updates, “main” doesn't take the
        // new updates.
        //
        // 0   1   2   3   4   5   6
        // +---+---+---+---+---+---+
        // | a | b | c | d | e | f |
        // +---+---+---+---+---+---+
        //
        // “main” won't move its index.
        // “other” will move its index from 0 to 6.
        {
            let updates = linked_chunk.updates().unwrap();

            assert_eq!(
                updates.inner.write().unwrap().take_with_token(other_token),
                &[
                    PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
                    PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
                    PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
                    PushItems { at: Position(ChunkIdentifier(0), 3), items: vec!['d'] },
                    PushItems { at: Position(ChunkIdentifier(0), 4), items: vec!['e'] },
                    PushItems { at: Position(ChunkIdentifier(0), 5), items: vec!['f'] },
                ]
            );

            {
                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // It must be the same number as before as the garbage collector will be able to
                // remove unused updates but at the next call…
                assert_eq!(inner.len(), 6);

                // Inspect the indices.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&main_token), Some(&3));
                assert_eq!(indices.get(&other_token), Some(&6));
            }
        }

        // Scenario 3: “other” take new updates, but there is none, “main”
        // doesn't take new updates. The garbage collector will run and collect
        // unused updates.
        //
        // 0   1   2   3
        // +---+---+---+
        // | d | e | f |
        // +---+---+---+
        //
        // “main” will have its index updated from 3 to 0.
        // “other” will have its index updated from 6 to 3.
        {
            let updates = linked_chunk.updates().unwrap();

            assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());

            {
                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // The garbage collector has removed unused updates.
                assert_eq!(inner.len(), 3);

                // Inspect the indices. They must have been adjusted.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&main_token), Some(&0));
                assert_eq!(indices.get(&other_token), Some(&3));
            }
        }

        linked_chunk.push_items_back(['g']);
        linked_chunk.push_items_back(['h']);
        linked_chunk.push_items_back(['i']);

        // Scenario 4: both “main” and “other” take the new updates.
        //
        // 0   1   2   3   4   5   6
        // +---+---+---+---+---+---+
        // | d | e | f | g | h | i |
        // +---+---+---+---+---+---+
        //
        // “main” will have its index updated from 0 to 3.
        // “other” will have its index updated from 6 to 3.
        {
            let updates = linked_chunk.updates().unwrap();

            assert_eq!(
                updates.take(),
                &[
                    PushItems { at: Position(ChunkIdentifier(0), 3), items: vec!['d'] },
                    PushItems { at: Position(ChunkIdentifier(0), 4), items: vec!['e'] },
                    PushItems { at: Position(ChunkIdentifier(0), 5), items: vec!['f'] },
                    PushItems { at: Position(ChunkIdentifier(0), 6), items: vec!['g'] },
                    PushItems { at: Position(ChunkIdentifier(0), 7), items: vec!['h'] },
                    PushItems { at: Position(ChunkIdentifier(0), 8), items: vec!['i'] },
                ]
            );
            assert_eq!(
                updates.inner.write().unwrap().take_with_token(other_token),
                &[
                    PushItems { at: Position(ChunkIdentifier(0), 6), items: vec!['g'] },
                    PushItems { at: Position(ChunkIdentifier(0), 7), items: vec!['h'] },
                    PushItems { at: Position(ChunkIdentifier(0), 8), items: vec!['i'] },
                ]
            );

            {
                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // The garbage collector had a chance to collect the first 3 updates.
                assert_eq!(inner.len(), 3);

                // Inspect the indices.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&main_token), Some(&3));
                assert_eq!(indices.get(&other_token), Some(&3));
            }
        }

        // Scenario 5: no more updates but they both try to take new updates.
        // The garbage collector will collect all updates as all of them as
        // been read already.
        //
        // “main” will have its index updated from 0 to 0.
        // “other” will have its index updated from 3 to 0.
        {
            let updates = linked_chunk.updates().unwrap();

            assert!(updates.take().is_empty());
            assert!(updates.inner.write().unwrap().take_with_token(other_token).is_empty());

            {
                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // The garbage collector had a chance to collect all updates.
                assert_eq!(inner.len(), 0);

                // Inspect the indices.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&main_token), Some(&0));
                assert_eq!(indices.get(&other_token), Some(&0));
            }
        }
    }

    struct CounterWaker {
        number_of_wakeup: Mutex<usize>,
    }

    impl Wake for CounterWaker {
        fn wake(self: Arc<Self>) {
            *self.number_of_wakeup.lock().unwrap() += 1;
        }
    }

    #[test]
    fn test_updates_stream() {
        use super::Update::*;

        let counter_waker = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });
        let waker = counter_waker.clone().into();
        let mut context = Context::from_waker(&waker);

        let mut linked_chunk = LinkedChunk::<3, char, ()>::new_with_update_history();

        let updates_subscriber = linked_chunk.updates().unwrap().subscribe();
        pin_mut!(updates_subscriber);

        // Initial update, stream is ready.
        assert_matches!(
            updates_subscriber.as_mut().poll_next(&mut context),
            Poll::Ready(Some(items)) => {
                assert_eq!(
                    items,
                    &[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
                );
            }
        );
        assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);
        assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 0);

        // Let's generate an update.
        linked_chunk.push_items_back(['a']);

        // The waker must have been called.
        assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 1);

        // There is an update! Right after that, the stream is pending again.
        assert_matches!(
            updates_subscriber.as_mut().poll_next(&mut context),
            Poll::Ready(Some(items)) => {
                assert_eq!(
                    items,
                    &[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
                );
            }
        );
        assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);

        // Let's generate two other updates.
        linked_chunk.push_items_back(['b']);
        linked_chunk.push_items_back(['c']);

        // The waker must have been called only once for the two updates.
        assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 2);

        // We can consume the updates without the stream, but the stream continues to
        // know it has updates.
        assert_eq!(
            linked_chunk.updates().unwrap().take(),
            &[
                NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None },
                PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] },
                PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
                PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
            ]
        );
        assert_matches!(
            updates_subscriber.as_mut().poll_next(&mut context),
            Poll::Ready(Some(items)) => {
                assert_eq!(
                    items,
                    &[
                        PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
                        PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
                    ]
                );
            }
        );
        assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Pending);

        // When dropping the `LinkedChunk`, it closes the stream.
        drop(linked_chunk);
        assert_matches!(updates_subscriber.as_mut().poll_next(&mut context), Poll::Ready(None));

        // Wakers calls have not changed.
        assert_eq!(*counter_waker.number_of_wakeup.lock().unwrap(), 2);
    }

    #[test]
    fn test_updates_multiple_streams() {
        use super::Update::*;

        let counter_waker1 = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });
        let counter_waker2 = Arc::new(CounterWaker { number_of_wakeup: Mutex::new(0) });

        let waker1 = counter_waker1.clone().into();
        let waker2 = counter_waker2.clone().into();

        let mut context1 = Context::from_waker(&waker1);
        let mut context2 = Context::from_waker(&waker2);

        let mut linked_chunk = LinkedChunk::<3, char, ()>::new_with_update_history();

        let updates_subscriber1 = linked_chunk.updates().unwrap().subscribe();
        pin_mut!(updates_subscriber1);

        // Scope for `updates_subscriber2`.
        let updates_subscriber2_token = {
            let updates_subscriber2 = linked_chunk.updates().unwrap().subscribe();
            pin_mut!(updates_subscriber2);

            // Initial updates, streams are ready.
            assert_matches!(
                updates_subscriber1.as_mut().poll_next(&mut context1),
                Poll::Ready(Some(items)) => {
                    assert_eq!(
                        items,
                        &[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
                    );
                }
            );
            assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
            assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 0);

            assert_matches!(
                updates_subscriber2.as_mut().poll_next(&mut context2),
                Poll::Ready(Some(items)) => {
                    assert_eq!(
                        items,
                        &[NewItemsChunk { previous: None, new: ChunkIdentifier(0), next: None }]
                    );
                }
            );
            assert_matches!(updates_subscriber2.as_mut().poll_next(&mut context2), Poll::Pending);
            assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 0);

            // Let's generate an update.
            linked_chunk.push_items_back(['a']);

            // The wakers must have been called.
            assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 1);
            assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 1);

            // There is an update! Right after that, the streams are pending again.
            assert_matches!(
                updates_subscriber1.as_mut().poll_next(&mut context1),
                Poll::Ready(Some(items)) => {
                    assert_eq!(
                        items,
                        &[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
                    );
                }
            );
            assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);
            assert_matches!(
                updates_subscriber2.as_mut().poll_next(&mut context2),
                Poll::Ready(Some(items)) => {
                    assert_eq!(
                        items,
                        &[PushItems { at: Position(ChunkIdentifier(0), 0), items: vec!['a'] }]
                    );
                }
            );
            assert_matches!(updates_subscriber2.as_mut().poll_next(&mut context2), Poll::Pending);

            // Let's generate two other updates.
            linked_chunk.push_items_back(['b']);
            linked_chunk.push_items_back(['c']);

            // A waker is consumed when called. The first call to `push_items_back` will
            // call and consume the wakers. The second call to `push_items_back` will do
            // nothing as the wakers have been consumed. New wakers will be registered on
            // polling.
            //
            // So, the waker must have been called only once for the two updates.
            assert_eq!(*counter_waker1.number_of_wakeup.lock().unwrap(), 2);
            assert_eq!(*counter_waker2.number_of_wakeup.lock().unwrap(), 2);

            // Let's poll `updates_subscriber1` only.
            assert_matches!(
                updates_subscriber1.as_mut().poll_next(&mut context1),
                Poll::Ready(Some(items)) => {
                    assert_eq!(
                        items,
                        &[
                            PushItems { at: Position(ChunkIdentifier(0), 1), items: vec!['b'] },
                            PushItems { at: Position(ChunkIdentifier(0), 2), items: vec!['c'] },
                        ]
                    );
                }
            );
            assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);

            // For the sake of this test, we also need to advance the main reader token.
            let _ = linked_chunk.updates().unwrap().take();
            let _ = linked_chunk.updates().unwrap().take();

            // If we inspect the garbage collector state, `a`, `b` and `c` should still be
            // present because not all of them have been consumed by `updates_subscriber2`
            // yet.
            {
                let updates = linked_chunk.updates().unwrap();

                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory.
                // We get 2 because the garbage collector runs before data are taken, not after:
                // `updates_subscriber2` has read `a` only, so `b` and `c` remain.
                assert_eq!(inner.len(), 2);

                // Inspect the indices.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&updates_subscriber1.token), Some(&2));
                assert_eq!(indices.get(&updates_subscriber2.token), Some(&0));
            }

            // Poll `updates_subscriber1` again: there is no new update so it must be
            // pending.
            assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);

            // The state of the garbage collector is unchanged: `a`, `b` and `c` are still
            // in memory.
            {
                let updates = linked_chunk.updates().unwrap();

                let inner = updates.inner.read().unwrap();

                // Inspect number of updates in memory. Value is unchanged.
                assert_eq!(inner.len(), 2);

                // Inspect the indices. They are unchanged.
                let indices = &inner.last_index_per_reader;

                assert_eq!(indices.get(&updates_subscriber1.token), Some(&2));
                assert_eq!(indices.get(&updates_subscriber2.token), Some(&0));
            }

            updates_subscriber2.token
            // Drop `updates_subscriber2`!
        };

        // `updates_subscriber2` has been dropped. Poll `updates_subscriber1` again:
        // still no new update, but it will run the garbage collector again, and this
        // time `updates_subscriber2` is not “retaining” `b` and `c`. The garbage
        // collector must be empty.
        assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Pending);

        // Inspect the garbage collector.
        {
            let updates = linked_chunk.updates().unwrap();

            let inner = updates.inner.read().unwrap();

            // Inspect number of updates in memory.
            assert_eq!(inner.len(), 0);

            // Inspect the indices.
            let indices = &inner.last_index_per_reader;

            assert_eq!(indices.get(&updates_subscriber1.token), Some(&0));
            assert_eq!(indices.get(&updates_subscriber2_token), None); // token is unknown!
        }

        // When dropping the `LinkedChunk`, it closes the stream.
        drop(linked_chunk);
        assert_matches!(updates_subscriber1.as_mut().poll_next(&mut context1), Poll::Ready(None));
    }
}