Struct matrix_sdk_ui::timeline::ReactionsByKeyBySender
source · pub struct ReactionsByKeyBySender(/* private fields */);
Expand description
Reactions grouped by key first, then by sender.
This representation makes sure that a given sender has sent at most one reaction for an event.
Methods from Deref<Target = IndexMap<String, IndexMap<OwnedUserId, ReactionInfo>>>§
sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Return the number of elements the map can hold without reallocating.
This number is a lower bound; the map might be able to hold more, but is guaranteed to be able to hold at least this many.
Computes in O(1) time.
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Return the number of key-value pairs in the map.
Computes in O(1) time.
sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the map contains no elements.
Computes in O(1) time.
sourcepub fn iter(&self) -> Iter<'_, K, V>
pub fn iter(&self) -> Iter<'_, K, V>
Return an iterator over the key-value pairs of the map, in their order
sourcepub fn iter_mut(&mut self) -> IterMut<'_, K, V>
pub fn iter_mut(&mut self) -> IterMut<'_, K, V>
Return an iterator over the key-value pairs of the map, in their order
sourcepub fn keys(&self) -> Keys<'_, K, V>
pub fn keys(&self) -> Keys<'_, K, V>
Return an iterator over the keys of the map, in their order
sourcepub fn values(&self) -> Values<'_, K, V>
pub fn values(&self) -> Values<'_, K, V>
Return an iterator over the values of the map, in their order
sourcepub fn values_mut(&mut self) -> ValuesMut<'_, K, V>
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>
Return an iterator over mutable references to the values of the map, in their order
sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Remove all key-value pairs in the map, while preserving its capacity.
Computes in O(n) time.
sourcepub fn truncate(&mut self, len: usize)
pub fn truncate(&mut self, len: usize)
Shortens the map, keeping the first len
elements and dropping the rest.
If len
is greater than the map’s current length, this has no effect.
sourcepub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>where
R: RangeBounds<usize>,
pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>where
R: RangeBounds<usize>,
Clears the IndexMap
in the given index range, returning those
key-value pairs as a drain iterator.
The range may be any type that implements RangeBounds<usize>
,
including all of the std::ops::Range*
types, or even a tuple pair of
Bound
start and end values. To drain the map entirely, use RangeFull
like map.drain(..)
.
This shifts down all entries following the drained range to fill the gap, and keeps the allocated memory for reuse.
Panics if the starting point is greater than the end point or if the end point is greater than the length of the map.
sourcepub fn split_off(&mut self, at: usize) -> IndexMap<K, V, S>where
S: Clone,
pub fn split_off(&mut self, at: usize) -> IndexMap<K, V, S>where
S: Clone,
Splits the collection into two at the given index.
Returns a newly allocated map containing the elements in the range
[at, len)
. After the call, the original map will be left containing
the elements [0, at)
with its previous capacity unchanged.
Panics if at > len
.
sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserve capacity for additional
more key-value pairs.
Computes in O(n) time.
sourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Reserve capacity for additional
more key-value pairs, without over-allocating.
Unlike reserve
, this does not deliberately over-allocate the entry capacity to avoid
frequent re-allocations. However, the underlying data structures may still have internal
capacity requirements, and the allocator itself may give more space than requested, so this
cannot be relied upon to be precisely minimal.
Computes in O(n) time.
sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Try to reserve capacity for additional
more key-value pairs.
Computes in O(n) time.
sourcepub fn try_reserve_exact(
&mut self,
additional: usize,
) -> Result<(), TryReserveError>
pub fn try_reserve_exact( &mut self, additional: usize, ) -> Result<(), TryReserveError>
Try to reserve capacity for additional
more key-value pairs, without over-allocating.
Unlike try_reserve
, this does not deliberately over-allocate the entry capacity to avoid
frequent re-allocations. However, the underlying data structures may still have internal
capacity requirements, and the allocator itself may give more space than requested, so this
cannot be relied upon to be precisely minimal.
Computes in O(n) time.
sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrink the capacity of the map as much as possible.
Computes in O(n) time.
sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrink the capacity of the map with a lower limit.
Computes in O(n) time.
sourcepub fn insert(&mut self, key: K, value: V) -> Option<V>
pub fn insert(&mut self, key: K, value: V) -> Option<V>
Insert a key-value pair in the map.
If an equivalent key already exists in the map: the key remains and
retains in its place in the order, its corresponding value is updated
with value
, and the older value is returned inside Some(_)
.
If no equivalent key existed in the map: the new key-value pair is
inserted, last in order, and None
is returned.
Computes in O(1) time (amortized average).
See also entry
if you want to insert or modify,
or insert_full
if you need to get the index of
the corresponding key-value pair.
sourcepub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>)
pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>)
Insert a key-value pair in the map, and get their index.
If an equivalent key already exists in the map: the key remains and
retains in its place in the order, its corresponding value is updated
with value
, and the older value is returned inside (index, Some(_))
.
If no equivalent key existed in the map: the new key-value pair is
inserted, last in order, and (index, None)
is returned.
Computes in O(1) time (amortized average).
See also entry
if you want to insert or modify.
sourcepub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)where
K: Ord,
pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)where
K: Ord,
Insert a key-value pair in the map at its ordered position among sorted keys.
This is equivalent to finding the position with
binary_search_keys
, then either updating
it or calling shift_insert
for a new key.
If the sorted key is found in the map, its corresponding value is
updated with value
, and the older value is returned inside
(index, Some(_))
. Otherwise, the new key-value pair is inserted at
the sorted position, and (index, None)
is returned.
If the existing keys are not already sorted, then the insertion
index is unspecified (like slice::binary_search
), but the key-value
pair is moved to or inserted at that position regardless.
Computes in O(n) time (average). Instead of repeating calls to
insert_sorted
, it may be faster to call batched insert
or extend
and only call sort_keys
or sort_unstable_keys
once.
sourcepub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V>
pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V>
Insert a key-value pair in the map at the given index.
If an equivalent key already exists in the map: the key remains and
is moved to the new position in the map, its corresponding value is updated
with value
, and the older value is returned inside Some(_)
.
If no equivalent key existed in the map: the new key-value pair is
inserted at the given index, and None
is returned.
Panics if index
is out of bounds.
Computes in O(n) time (average).
See also entry
if you want to insert or modify,
perhaps only using the index for new entries with VacantEntry::shift_insert
.
sourcepub fn entry(&mut self, key: K) -> Entry<'_, K, V>
pub fn entry(&mut self, key: K) -> Entry<'_, K, V>
Get the given key’s corresponding entry in the map for insertion and/or in-place manipulation.
Computes in O(1) time (amortized average).
sourcepub fn splice<R, I>(
&mut self,
range: R,
replace_with: I,
) -> Splice<'_, <I as IntoIterator>::IntoIter, K, V, S>
pub fn splice<R, I>( &mut self, range: R, replace_with: I, ) -> Splice<'_, <I as IntoIterator>::IntoIter, K, V, S>
Creates a splicing iterator that replaces the specified range in the map
with the given replace_with
key-value iterator and yields the removed
items. replace_with
does not need to be the same length as range
.
The range
is removed even if the iterator is not consumed until the
end. It is unspecified how many elements are removed from the map if the
Splice
value is leaked.
The input iterator replace_with
is only consumed when the Splice
value is dropped. If a key from the iterator matches an existing entry
in the map (outside of range
), then the value will be updated in that
position. Otherwise, the new key-value pair will be inserted in the
replaced range
.
Panics if the starting point is greater than the end point or if the end point is greater than the length of the map.
§Examples
use indexmap::IndexMap;
let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
let removed: Vec<_> = map.splice(2..4, new).collect();
// 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
sourcepub fn contains_key<Q>(&self, key: &Q) -> bool
pub fn contains_key<Q>(&self, key: &Q) -> bool
Return true
if an equivalent to key
exists in the map.
Computes in O(1) time (average).
sourcepub fn get<Q>(&self, key: &Q) -> Option<&V>
pub fn get<Q>(&self, key: &Q) -> Option<&V>
Return a reference to the value stored for key
, if it is present,
else None
.
Computes in O(1) time (average).
sourcepub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
Return references to the key-value pair stored for key
,
if it is present, else None
.
Computes in O(1) time (average).
sourcepub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
Return item index, if it exists in the map
Computes in O(1) time (average).
pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
sourcepub fn remove<Q>(&mut self, key: &Q) -> Option<V>
👎Deprecated: remove
disrupts the map order – use swap_remove
or shift_remove
for explicit behavior.
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
remove
disrupts the map order – use swap_remove
or shift_remove
for explicit behavior.Remove the key-value pair equivalent to key
and return
its value.
NOTE: This is equivalent to .swap_remove(key)
, replacing this
entry’s position with the last element, and it is deprecated in favor of calling that
explicitly. If you need to preserve the relative order of the keys in the map, use
.shift_remove(key)
instead.
sourcepub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
👎Deprecated: remove_entry
disrupts the map order – use swap_remove_entry
or shift_remove_entry
for explicit behavior.
pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
remove_entry
disrupts the map order – use swap_remove_entry
or shift_remove_entry
for explicit behavior.Remove and return the key-value pair equivalent to key
.
NOTE: This is equivalent to .swap_remove_entry(key)
,
replacing this entry’s position with the last element, and it is deprecated in favor of
calling that explicitly. If you need to preserve the relative order of the keys in the map,
use .shift_remove_entry(key)
instead.
sourcepub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
Remove the key-value pair equivalent to key
and return
its value.
Like Vec::swap_remove
, the pair is removed by swapping it with the
last element of the map and popping it off. This perturbs
the position of what used to be the last element!
Return None
if key
is not in map.
Computes in O(1) time (average).
sourcepub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
Remove and return the key-value pair equivalent to key
.
Like Vec::swap_remove
, the pair is removed by swapping it with the
last element of the map and popping it off. This perturbs
the position of what used to be the last element!
Return None
if key
is not in map.
Computes in O(1) time (average).
sourcepub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
Remove the key-value pair equivalent to key
and return it and
the index it had.
Like Vec::swap_remove
, the pair is removed by swapping it with the
last element of the map and popping it off. This perturbs
the position of what used to be the last element!
Return None
if key
is not in map.
Computes in O(1) time (average).
sourcepub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
Remove the key-value pair equivalent to key
and return
its value.
Like Vec::remove
, the pair is removed by shifting all of the
elements that follow it, preserving their relative order.
This perturbs the index of all of those elements!
Return None
if key
is not in map.
Computes in O(n) time (average).
sourcepub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
Remove and return the key-value pair equivalent to key
.
Like Vec::remove
, the pair is removed by shifting all of the
elements that follow it, preserving their relative order.
This perturbs the index of all of those elements!
Return None
if key
is not in map.
Computes in O(n) time (average).
sourcepub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
Remove the key-value pair equivalent to key
and return it and
the index it had.
Like Vec::remove
, the pair is removed by shifting all of the
elements that follow it, preserving their relative order.
This perturbs the index of all of those elements!
Return None
if key
is not in map.
Computes in O(n) time (average).
sourcepub fn pop(&mut self) -> Option<(K, V)>
pub fn pop(&mut self) -> Option<(K, V)>
Remove the last key-value pair
This preserves the order of the remaining elements.
Computes in O(1) time (average).
sourcepub fn retain<F>(&mut self, keep: F)
pub fn retain<F>(&mut self, keep: F)
Scan through each key-value pair in the map and keep those where the
closure keep
returns true
.
The elements are visited in order, and remaining elements keep their order.
Computes in O(n) time (average).
sourcepub fn sort_keys(&mut self)where
K: Ord,
pub fn sort_keys(&mut self)where
K: Ord,
Sort the map’s key-value pairs by the default ordering of the keys.
This is a stable sort – but equivalent keys should not normally coexist in
a map at all, so sort_unstable_keys
is preferred
because it is generally faster and doesn’t allocate auxiliary memory.
See sort_by
for details.
sourcepub fn sort_by<F>(&mut self, cmp: F)
pub fn sort_by<F>(&mut self, cmp: F)
Sort the map’s key-value pairs in place using the comparison
function cmp
.
The comparison function receives two key and value pairs to compare (you can sort by keys or values or their combination as needed).
Computes in O(n log n + c) time and O(n) space where n is the length of the map and c the capacity. The sort is stable.
sourcepub fn sort_unstable_keys(&mut self)where
K: Ord,
pub fn sort_unstable_keys(&mut self)where
K: Ord,
Sort the map’s key-value pairs by the default ordering of the keys, but may not preserve the order of equal elements.
See sort_unstable_by
for details.
sourcepub fn sort_unstable_by<F>(&mut self, cmp: F)
pub fn sort_unstable_by<F>(&mut self, cmp: F)
Sort the map’s key-value pairs in place using the comparison function cmp
, but
may not preserve the order of equal elements.
The comparison function receives two key and value pairs to compare (you can sort by keys or values or their combination as needed).
Computes in O(n log n + c) time where n is the length of the map and c is the capacity. The sort is unstable.
sourcepub fn sort_by_cached_key<T, F>(&mut self, sort_key: F)
pub fn sort_by_cached_key<T, F>(&mut self, sort_key: F)
Sort the map’s key-value pairs in place using a sort-key extraction function.
During sorting, the function is called at most once per entry, by using temporary storage
to remember the results of its evaluation. The order of calls to the function is
unspecified and may change between versions of indexmap
or the standard library.
Computes in O(m n + n log n + c) time () and O(n) space, where the function is O(m), n is the length of the map, and c the capacity. The sort is stable.
sourcepub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>where
K: Ord,
pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>where
K: Ord,
Search over a sorted map for a key.
Returns the position where that key is present, or the position where it can be inserted to
maintain the sort. See slice::binary_search
for more details.
Computes in O(log(n)) time, which is notably less scalable than looking the key up
using get_index_of
, but this can also position missing keys.
sourcepub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
Search over a sorted map with a comparator function.
Returns the position where that value is present, or the position where it can be inserted
to maintain the sort. See slice::binary_search_by
for more details.
Computes in O(log(n)) time.
sourcepub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F,
) -> Result<usize, usize>
pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
Search over a sorted map with an extraction function.
Returns the position where that value is present, or the position where it can be inserted
to maintain the sort. See slice::binary_search_by_key
for more details.
Computes in O(log(n)) time.
sourcepub fn partition_point<P>(&self, pred: P) -> usize
pub fn partition_point<P>(&self, pred: P) -> usize
Returns the index of the partition point of a sorted map according to the given predicate (the index of the first element of the second partition).
See slice::partition_point
for more details.
Computes in O(log(n)) time.
sourcepub fn reverse(&mut self)
pub fn reverse(&mut self)
Reverses the order of the map’s key-value pairs in place.
Computes in O(n) time and O(1) space.
sourcepub fn as_slice(&self) -> &Slice<K, V>
pub fn as_slice(&self) -> &Slice<K, V>
Returns a slice of all the key-value pairs in the map.
Computes in O(1) time.
sourcepub fn as_mut_slice(&mut self) -> &mut Slice<K, V>
pub fn as_mut_slice(&mut self) -> &mut Slice<K, V>
Returns a mutable slice of all the key-value pairs in the map.
Computes in O(1) time.
sourcepub fn get_index(&self, index: usize) -> Option<(&K, &V)>
pub fn get_index(&self, index: usize) -> Option<(&K, &V)>
Get a key-value pair by index
Valid indices are 0 <= index < self.len()
Computes in O(1) time.
sourcepub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)>
pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)>
Get a key-value pair by index
Valid indices are 0 <= index < self.len()
Computes in O(1) time.
sourcepub fn get_index_entry(
&mut self,
index: usize,
) -> Option<IndexedEntry<'_, K, V>>
pub fn get_index_entry( &mut self, index: usize, ) -> Option<IndexedEntry<'_, K, V>>
Get an entry in the map by index for in-place manipulation.
Valid indices are 0 <= index < self.len()
Computes in O(1) time.
sourcepub fn get_range<R>(&self, range: R) -> Option<&Slice<K, V>>where
R: RangeBounds<usize>,
pub fn get_range<R>(&self, range: R) -> Option<&Slice<K, V>>where
R: RangeBounds<usize>,
Returns a slice of key-value pairs in the given range of indices.
Valid indices are 0 <= index < self.len()
Computes in O(1) time.
sourcepub fn get_range_mut<R>(&mut self, range: R) -> Option<&mut Slice<K, V>>where
R: RangeBounds<usize>,
pub fn get_range_mut<R>(&mut self, range: R) -> Option<&mut Slice<K, V>>where
R: RangeBounds<usize>,
Returns a mutable slice of key-value pairs in the given range of indices.
Valid indices are 0 <= index < self.len()
Computes in O(1) time.
sourcepub fn first_mut(&mut self) -> Option<(&K, &mut V)>
pub fn first_mut(&mut self) -> Option<(&K, &mut V)>
Get the first key-value pair, with mutable access to the value
Computes in O(1) time.
sourcepub fn last_mut(&mut self) -> Option<(&K, &mut V)>
pub fn last_mut(&mut self) -> Option<(&K, &mut V)>
Get the last key-value pair, with mutable access to the value
Computes in O(1) time.
sourcepub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)>
pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)>
Remove the key-value pair by index
Valid indices are 0 <= index < self.len()
Like Vec::swap_remove
, the pair is removed by swapping it with the
last element of the map and popping it off. This perturbs
the position of what used to be the last element!
Computes in O(1) time (average).
sourcepub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)>
pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)>
Remove the key-value pair by index
Valid indices are 0 <= index < self.len()
Like Vec::remove
, the pair is removed by shifting all of the
elements that follow it, preserving their relative order.
This perturbs the index of all of those elements!
Computes in O(n) time (average).
sourcepub fn move_index(&mut self, from: usize, to: usize)
pub fn move_index(&mut self, from: usize, to: usize)
Moves the position of a key-value pair from one index to another by shifting all other pairs in-between.
- If
from < to
, the other pairs will shift down while the targeted pair moves up. - If
from > to
, the other pairs will shift up while the targeted pair moves down.
Panics if from
or to
are out of bounds.
Computes in O(n) time (average).
sourcepub fn swap_indices(&mut self, a: usize, b: usize)
pub fn swap_indices(&mut self, a: usize, b: usize)
Swaps the position of two key-value pairs in the map.
Panics if a
or b
are out of bounds.
Computes in O(1) time (average).
Trait Implementations§
source§impl Clone for ReactionsByKeyBySender
impl Clone for ReactionsByKeyBySender
source§fn clone(&self) -> ReactionsByKeyBySender
fn clone(&self) -> ReactionsByKeyBySender
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for ReactionsByKeyBySender
impl Debug for ReactionsByKeyBySender
source§impl Default for ReactionsByKeyBySender
impl Default for ReactionsByKeyBySender
source§fn default() -> ReactionsByKeyBySender
fn default() -> ReactionsByKeyBySender
source§impl Deref for ReactionsByKeyBySender
impl Deref for ReactionsByKeyBySender
Auto Trait Implementations§
impl Freeze for ReactionsByKeyBySender
impl !RefUnwindSafe for ReactionsByKeyBySender
impl Send for ReactionsByKeyBySender
impl Sync for ReactionsByKeyBySender
impl Unpin for ReactionsByKeyBySender
impl !UnwindSafe for ReactionsByKeyBySender
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> CompatExt for T
impl<T> CompatExt for T
source§impl<T> FutureExt for T
impl<T> FutureExt for T
source§fn with_context(self, otel_cx: Context) -> WithContext<Self>
fn with_context(self, otel_cx: Context) -> WithContext<Self>
source§fn with_current_context(self) -> WithContext<Self>
fn with_current_context(self) -> WithContext<Self>
source§impl<T, UT> HandleAlloc<UT> for T
impl<T, UT> HandleAlloc<UT> for T
source§fn consume_handle(handle: Handle) -> Arc<T>
fn consume_handle(handle: Handle) -> Arc<T>
Arc<>
source§impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
source§impl<T> Identity for Twhere
T: ?Sized,
impl<T> Identity for Twhere
T: ?Sized,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian()
.