vodozemac/types/
ed25519.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
// Copyright 2021 Denis Kasak, Damir Jelić
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt::Display;

use base64::decoded_len_estimate;
use base64ct::Encoding;
use curve25519_dalek::EdwardsPoint;
#[cfg(not(fuzzing))]
use ed25519_dalek::Verifier;
use ed25519_dalek::{
    Signature, Signer, SigningKey, VerifyingKey, PUBLIC_KEY_LENGTH, SIGNATURE_LENGTH,
};
use rand::thread_rng;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use serde_bytes::{ByteBuf as SerdeByteBuf, Bytes as SerdeBytes};
use sha2::Sha512;
use thiserror::Error;
use zeroize::Zeroize;

use crate::utilities::{base64_decode, base64_encode};

/// Error type describing signature verification failures.
#[derive(Debug, Error)]
pub enum SignatureError {
    /// The signature wasn't valid base64.
    #[error("The signature couldn't be decoded: {0}")]
    Base64(#[from] base64::DecodeError),
    /// The signature failed to be verified.
    #[error("The signature was invalid: {0}")]
    Signature(#[from] ed25519_dalek::SignatureError),
}

/// A struct collecting both a public, and a secret, Ed25519 key.
#[derive(Deserialize, Serialize)]
#[serde(try_from = "Ed25519KeypairPickle")]
#[serde(into = "Ed25519KeypairPickle")]
pub struct Ed25519Keypair {
    secret_key: SecretKeys,
    public_key: Ed25519PublicKey,
}

struct ExpandedSecretKey {
    source: Box<[u8; 64]>,
    inner: Box<ed25519_dalek::hazmat::ExpandedSecretKey>,
}

impl ExpandedSecretKey {
    fn from_bytes(bytes: &[u8; 64]) -> Self {
        let mut source = Box::new([0u8; 64]);
        source.copy_from_slice(bytes);

        Self { source, inner: ed25519_dalek::hazmat::ExpandedSecretKey::from_bytes(bytes).into() }
    }

    const fn as_bytes(&self) -> &[u8; 64] {
        &self.source
    }

    fn sign(&self, message: &[u8]) -> Signature {
        ed25519_dalek::hazmat::raw_sign::<Sha512>(&self.inner, message, &self.public_key().0)
    }

    fn public_key(&self) -> Ed25519PublicKey {
        let point = EdwardsPoint::mul_base(&self.inner.scalar);
        Ed25519PublicKey(VerifyingKey::from(point))
    }
}

impl Clone for ExpandedSecretKey {
    fn clone(&self) -> Self {
        let source = self.source.clone();
        Self {
            source,
            inner: ed25519_dalek::hazmat::ExpandedSecretKey::from_bytes(&self.source).into(),
        }
    }
}

impl Serialize for ExpandedSecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let bytes = self.as_bytes();
        SerdeBytes::new(bytes).serialize(serializer)
    }
}

impl<'d> Deserialize<'d> for ExpandedSecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'d>,
    {
        let mut bytes = <SerdeByteBuf>::deserialize(deserializer)?;
        let length = bytes.len();

        if bytes.len() != 64 {
            bytes.zeroize();

            Err(serde::de::Error::custom(format!(
                "Invalid secret key length: expected 64 bytes, got {length}"
            )))
        } else {
            let mut slice = [0u8; 64];
            slice.copy_from_slice(&bytes);

            let ret = ExpandedSecretKey::from_bytes(&slice);

            slice.zeroize();
            bytes.zeroize();

            Ok(ret)
        }
    }
}

impl Ed25519Keypair {
    /// Create a new, random, `Ed25519Keypair`.
    pub fn new() -> Self {
        let mut rng = thread_rng();
        let signing_key = SigningKey::generate(&mut rng);

        Self {
            public_key: Ed25519PublicKey(signing_key.verifying_key()),
            secret_key: signing_key.into(),
        }
    }

    pub(crate) fn from_unexpanded_key(secret_key: &[u8; 32]) -> Result<Self, crate::KeyError> {
        let secret_key = SigningKey::from_bytes(secret_key);
        let public_key = secret_key.verifying_key();
        Ok(Self { secret_key: secret_key.into(), public_key: Ed25519PublicKey(public_key) })
    }

    pub(crate) fn unexpanded_secret_key(&self) -> Option<Box<[u8; 32]>> {
        match &self.secret_key {
            SecretKeys::Normal(k) => Some(Box::new(k.to_bytes())),
            SecretKeys::Expanded(_) => None,
        }
    }

    #[cfg(feature = "libolm-compat")]
    pub(crate) fn from_expanded_key(secret_key: &[u8; 64]) -> Result<Self, crate::KeyError> {
        let secret_key = ExpandedSecretKey::from_bytes(secret_key);
        let public_key = secret_key.public_key();

        Ok(Self { secret_key: secret_key.into(), public_key })
    }

    #[cfg(feature = "libolm-compat")]
    pub(crate) fn expanded_secret_key(&self) -> Box<[u8; 64]> {
        use sha2::Digest;

        let mut expanded = Box::new([0u8; 64]);

        match &self.secret_key {
            SecretKeys::Normal(k) => {
                let mut k = k.to_bytes();
                Sha512::new().chain_update(k).finalize_into(expanded.as_mut_slice().into());
                k.zeroize();
            }
            SecretKeys::Expanded(k) => expanded.copy_from_slice(k.as_bytes()),
        }

        expanded
    }

    /// Get the public Ed25519 key of this keypair.
    pub const fn public_key(&self) -> Ed25519PublicKey {
        self.public_key
    }

    /// Sign the given message with our secret key.
    pub fn sign(&self, message: &[u8]) -> Ed25519Signature {
        self.secret_key.sign(message)
    }
}

impl Default for Ed25519Keypair {
    fn default() -> Self {
        Self::new()
    }
}

/// An Ed25519 secret key, used to create digital signatures.
#[derive(Deserialize, Serialize)]
#[serde(transparent)]
pub struct Ed25519SecretKey(Box<SigningKey>);

impl Ed25519SecretKey {
    /// The number of bytes a Ed25519 secret key has.
    pub const LENGTH: usize = ed25519_dalek::SECRET_KEY_LENGTH;

    const BASE64_LENGTH: usize = 43;
    const PADDED_BASE64_LENGTH: usize = 44;

    /// Create a new random `Ed25519SecretKey`.
    pub fn new() -> Self {
        let mut rng = thread_rng();
        let signing_key = SigningKey::generate(&mut rng);
        let key = Box::new(signing_key);

        Self(key)
    }

    /// Get the byte representation of the secret key.
    ///
    /// **Warning**: This creates a copy of the key which won't be zeroized, the
    /// caller of the method needs to make sure to zeroize the returned array.
    pub fn to_bytes(&self) -> Box<[u8; 32]> {
        Box::new(self.0.to_bytes())
    }

    /// Try to create a `Ed25519SecretKey` from a slice of bytes.
    pub fn from_slice(bytes: &[u8; 32]) -> Self {
        Self(Box::new(SigningKey::from_bytes(bytes)))
    }

    /// Convert the secret key to a base64 encoded string.
    ///
    /// This can be useful if the secret key needs to be sent over the network
    /// or persisted.
    ///
    /// **Warning**: The string should be zeroized after it has been used,
    /// otherwise an unintentional copy of the key might exist in memory.
    pub fn to_base64(&self) -> String {
        let mut bytes = self.to_bytes();
        let ret = base64ct::Base64Unpadded::encode_string(bytes.as_ref());

        bytes.zeroize();

        ret
    }

    /// Try to create a `Ed25519SecretKey` from a base64 encoded string.
    pub fn from_base64(input: &str) -> Result<Self, crate::KeyError> {
        if input.len() != Self::BASE64_LENGTH && input.len() != Self::PADDED_BASE64_LENGTH {
            Err(crate::KeyError::InvalidKeyLength {
                key_type: "Ed25519",
                expected_length: ed25519_dalek::SECRET_KEY_LENGTH,
                length: decoded_len_estimate(input.len()),
            })
        } else {
            // Ed25519 secret keys can sometimes be encoded with padding, don't ask me why.
            // This means that if the unpadded decoding fails, we have to attempt the padded
            // one.
            let mut bytes = if let Ok(bytes) = base64ct::Base64Unpadded::decode_vec(input) {
                bytes
            } else {
                base64ct::Base64::decode_vec(input)?
            };

            let mut key_bytes = [0u8; 32];
            key_bytes.copy_from_slice(&bytes);
            let key = Self::from_slice(&key_bytes);

            bytes.zeroize();
            key_bytes.zeroize();

            Ok(key)
        }
    }

    /// Get the public key that matches this `Ed25519SecretKey`.
    pub fn public_key(&self) -> Ed25519PublicKey {
        Ed25519PublicKey(self.0.verifying_key())
    }

    /// Sign the given slice of bytes with this `Ed25519SecretKey`.
    ///
    /// The signature can be verified using the public key.
    ///
    /// # Examples
    ///
    /// ```
    /// use vodozemac::{Ed25519SecretKey, Ed25519PublicKey};
    ///
    /// let secret = Ed25519SecretKey::new();
    /// let message = "It's dangerous to go alone";
    ///
    /// let signature = secret.sign(message.as_bytes());
    ///
    /// let public_key = secret.public_key();
    ///
    /// public_key.verify(message.as_bytes(), &signature).expect("The signature has to be valid");
    /// ```
    pub fn sign(&self, message: &[u8]) -> Ed25519Signature {
        Ed25519Signature(self.0.sign(message))
    }
}

impl Default for Ed25519SecretKey {
    fn default() -> Self {
        Self::new()
    }
}

#[derive(Serialize, Deserialize)]
enum SecretKeys {
    Normal(Box<SigningKey>),
    Expanded(Box<ExpandedSecretKey>),
}

impl SecretKeys {
    fn public_key(&self) -> Ed25519PublicKey {
        match &self {
            SecretKeys::Normal(k) => Ed25519PublicKey(k.verifying_key()),
            SecretKeys::Expanded(k) => k.public_key(),
        }
    }

    fn sign(&self, message: &[u8]) -> Ed25519Signature {
        let signature = match &self {
            SecretKeys::Normal(k) => k.sign(message),
            SecretKeys::Expanded(k) => k.sign(message),
        };

        Ed25519Signature(signature)
    }
}

/// An Ed25519 public key, used to verify digital signatures.
#[derive(Serialize, Deserialize, Clone, Copy, PartialEq, Eq)]
#[serde(transparent)]
pub struct Ed25519PublicKey(VerifyingKey);

impl Ed25519PublicKey {
    /// The number of bytes a Ed25519 public key has.
    pub const LENGTH: usize = PUBLIC_KEY_LENGTH;

    const BASE64_LENGTH: usize = 43;
    const PADDED_BASE64_LENGTH: usize = 44;

    /// Try to create a `Ed25519PublicKey` from a slice of bytes.
    pub fn from_slice(bytes: &[u8; 32]) -> Result<Self, crate::KeyError> {
        Ok(Self(VerifyingKey::from_bytes(bytes).map_err(SignatureError::from)?))
    }

    /// View this public key as a byte array.
    pub fn as_bytes(&self) -> &[u8; Self::LENGTH] {
        self.0.as_bytes()
    }

    /// Instantiate a Ed25519PublicKey public key from an unpadded base64
    /// representation.
    pub fn from_base64(input: &str) -> Result<Self, crate::KeyError> {
        if input.len() != Self::BASE64_LENGTH && input.len() != Self::PADDED_BASE64_LENGTH {
            Err(crate::KeyError::InvalidKeyLength {
                key_type: "Ed25519",
                expected_length: Self::LENGTH,
                length: decoded_len_estimate(input.len()),
            })
        } else {
            let mut bytes = base64_decode(input)?;
            let mut key_bytes = [0u8; 32];

            key_bytes.copy_from_slice(&bytes);
            let key = Self::from_slice(&key_bytes);

            bytes.zeroize();
            key_bytes.zeroize();

            key
        }
    }

    /// Serialize a Ed25519PublicKey public key to an unpadded base64
    /// representation.
    pub fn to_base64(&self) -> String {
        base64_encode(self.as_bytes())
    }

    /// Verify that the provided signature for a given message has been signed
    /// by the private key matching this public one.
    ///
    /// By default this performs an [RFC8032] compatible signature check. A
    /// stricter version of the signature check can be enabled with the
    /// `strict-signatures` feature flag.
    ///
    /// The stricter variant is compatible with libsodium 0.16 and under the
    /// hood uses the [`ed25519_dalek::PublicKey::verify_strict()`] method.
    ///
    /// For more info, see the ed25519_dalek [README] and [this] post.
    ///
    /// [RFC8032]: https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
    /// [README]: https://github.com/dalek-cryptography/ed25519-dalek#a-note-on-signature-malleability
    /// [this]: https://hdevalence.ca/blog/2020-10-04-its-25519am
    #[cfg(not(fuzzing))]
    pub fn verify(
        &self,
        message: &[u8],
        signature: &Ed25519Signature,
    ) -> Result<(), SignatureError> {
        if cfg!(feature = "strict-signatures") {
            Ok(self.0.verify_strict(message, &signature.0)?)
        } else {
            Ok(self.0.verify(message, &signature.0)?)
        }
    }

    #[cfg(fuzzing)]
    #[allow(missing_docs)]
    pub fn verify(
        &self,
        _message: &[u8],
        _signature: &Ed25519Signature,
    ) -> Result<(), SignatureError> {
        Ok(())
    }
}

impl Display for Ed25519PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.to_base64())
    }
}

impl std::fmt::Debug for Ed25519PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let s = format!("ed25519:{self}");
        <str as std::fmt::Debug>::fmt(&s, f)
    }
}

/// An Ed25519 digital signature, can be used to verify the authenticity of a
/// message.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Ed25519Signature(pub(crate) Signature);

impl Ed25519Signature {
    /// The number of bytes a Ed25519 signature has.
    pub const LENGTH: usize = SIGNATURE_LENGTH;

    /// Try to create a `Ed25519Signature` from a slice of bytes.
    pub fn from_slice(bytes: &[u8]) -> Result<Self, SignatureError> {
        Ok(Self(Signature::try_from(bytes)?))
    }

    /// Try to create a `Ed25519Signature` from an unpadded base64
    /// representation.
    pub fn from_base64(signature: &str) -> Result<Self, SignatureError> {
        Ok(Self(Signature::try_from(base64_decode(signature)?.as_slice())?))
    }

    /// Serialize an `Ed25519Signature` to an unpadded base64 representation.
    pub fn to_base64(&self) -> String {
        base64_encode(self.0.to_bytes())
    }

    /// Convert the `Ed25519Signature` to a byte array.
    pub fn to_bytes(&self) -> [u8; Self::LENGTH] {
        self.0.to_bytes()
    }
}

impl Display for Ed25519Signature {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.to_base64())
    }
}

impl std::fmt::Debug for Ed25519Signature {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let s = format!("ed25519:{self}");
        <str as std::fmt::Debug>::fmt(&s, f)
    }
}

impl Clone for Ed25519Keypair {
    fn clone(&self) -> Self {
        let secret_key: SecretKeys = match &self.secret_key {
            SecretKeys::Normal(k) => SecretKeys::Normal(k.clone()),
            SecretKeys::Expanded(k) => SecretKeys::Expanded(k.clone()),
        };

        Self { secret_key, public_key: self.public_key }
    }
}

impl From<Ed25519Keypair> for Ed25519KeypairPickle {
    fn from(key: Ed25519Keypair) -> Self {
        Self(key.secret_key)
    }
}

impl From<SigningKey> for SecretKeys {
    fn from(key: SigningKey) -> Self {
        Self::Normal(Box::new(key))
    }
}

impl From<ExpandedSecretKey> for SecretKeys {
    fn from(key: ExpandedSecretKey) -> Self {
        Self::Expanded(Box::new(key))
    }
}

#[derive(Serialize, Deserialize)]
#[serde(transparent)]
pub struct Ed25519KeypairPickle(SecretKeys);

impl From<Ed25519KeypairPickle> for Ed25519Keypair {
    fn from(pickle: Ed25519KeypairPickle) -> Self {
        let secret_key = pickle.0;
        let public_key = secret_key.public_key();

        Self { secret_key, public_key }
    }
}

#[cfg(test)]
mod tests {
    use super::ExpandedSecretKey;
    use crate::{Ed25519Keypair, Ed25519PublicKey, Ed25519SecretKey, KeyError};

    #[test]
    fn byte_decoding_roundtrip_succeeds_for_secret_key() {
        let bytes = *b"oooooooooooooooooooooooooooooooo";
        let key = Ed25519SecretKey::from_slice(&bytes);
        assert_eq!(*(key.to_bytes()), bytes);
    }

    #[test]
    fn base64_decoding_incorrect_num_of_bytes_fails_for_secret_key() {
        assert!(matches!(
            Ed25519SecretKey::from_base64("foo"),
            Err(KeyError::InvalidKeyLength { .. })
        ));
    }

    #[test]
    fn unpadded_base64_decoding_roundtrip_succeeds_for_secret_key() {
        let base64 = "MTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE";
        let key = Ed25519SecretKey::from_base64(base64).expect("Should decode key from base64");
        assert_eq!(key.to_base64(), base64);
    }

    #[test]
    fn padded_base64_decoding_roundtrip_succeeds_for_secret_key() {
        let base64 = "MTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE=";
        let key = Ed25519SecretKey::from_base64(base64).expect("Should decode key from base64");
        assert_eq!(key.to_base64(), base64.trim_end_matches('='));
    }

    #[test]
    fn byte_decoding_roundtrip_succeeds_for_public_key() {
        let bytes = *b"oooooooooooooooooooooooooooooooo";
        let key = Ed25519PublicKey::from_slice(&bytes).expect("Should decode key from bytes");
        assert_eq!(key.as_bytes(), &bytes);
    }

    #[test]
    fn base64_decoding_incorrect_num_of_bytes_fails_for_public_key() {
        assert!(matches!(
            Ed25519PublicKey::from_base64("foo"),
            Err(KeyError::InvalidKeyLength { .. })
        ));
    }

    #[test]
    fn unpadded_base64_decoding_roundtrip_succeeds_for_public_key() {
        let base64 = "b29vb29vb29vb29vb29vb29vb29vb29vb29vb29vb28";
        let key = Ed25519PublicKey::from_base64(base64).expect("Should decode key from base64");
        assert_eq!(key.to_base64(), base64);
    }

    #[test]
    fn padded_base64_decoding_roundtrip_succeeds_for_public_key() {
        let base64 = "b29vb29vb29vb29vb29vb29vb29vb29vb29vb29vb28=";
        let key = Ed25519PublicKey::from_base64(base64).expect("Should decode key from base64");
        assert_eq!(key.to_base64(), base64.trim_end_matches('='));
    }

    #[test]
    fn verifying_valid_signature_succeeds() {
        let key_pair = Ed25519Keypair::new();
        let signature = key_pair.secret_key.sign(b"foo");
        key_pair.public_key().verify(b"foo", &signature).expect("Should verify valid signature");
    }

    #[test]
    fn verifying_invalid_signature_fails() {
        let key_pair = Ed25519Keypair::new();
        let signature = key_pair.secret_key.sign(b"foo");
        key_pair
            .public_key()
            .verify(b"bar", &signature)
            .expect_err("Should reject invalid signature");
    }

    #[test]
    #[cfg(feature = "libolm-compat")]
    fn can_only_expand_secret_key_once() {
        let key_pair = Ed25519Keypair::new();
        assert!(matches!(key_pair.secret_key, crate::types::ed25519::SecretKeys::Normal(_)));

        let expanded_key = key_pair.expanded_secret_key();
        let expanded_key_pair = Ed25519Keypair::from_expanded_key(&expanded_key).unwrap();
        assert!(matches!(
            expanded_key_pair.secret_key,
            crate::types::ed25519::SecretKeys::Expanded(_)
        ));
        assert_eq!(expanded_key_pair.public_key(), key_pair.public_key());

        let reexpanded_key = expanded_key_pair.expanded_secret_key();
        assert_eq!(reexpanded_key, expanded_key);
    }

    #[test]
    fn serialization_roundtrip_succeeds() {
        let bytes = b"9999999999999999999999999999999999999999999999999999999999999999";
        let key = ExpandedSecretKey::from_bytes(bytes);
        let serialized = serde_json::to_value(key).expect("Should serialize key");
        let deserialized = serde_json::from_value::<ExpandedSecretKey>(serialized)
            .expect("Should deserialize key");
        assert_eq!(deserialized.as_bytes(), bytes);
    }

    #[test]
    fn deserializing_from_invalid_length_fails() {
        let serialized = serde_json::to_value(b"foo").expect("Should serialize key");
        let deserialized = serde_json::from_value::<ExpandedSecretKey>(serialized);
        assert!(deserialized.is_err());
    }

    #[test]
    fn unexpanded_key_roundtrip_succeeds() {
        let key_pair = Ed25519Keypair::new();

        let unexpanded_key = key_pair.unexpanded_secret_key().expect("Should have unexpanded key");
        let recovered_key_pair = Ed25519Keypair::from_unexpanded_key(unexpanded_key.as_ref())
            .expect("Should create new keypair");

        assert_eq!(key_pair.public_key().to_base64(), recovered_key_pair.public_key().to_base64());
    }
}